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Machine Learning and Data Mining

  Core of Data Mining  Machine 
learning: How to construct programs 
that automatically learn from 
experience [Mitchell, 1997]
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What Will We Cover?

•  What does large scale mean?
•  Evolution as massive parallel processing
•  The challenges of data mining
•  Kaleidoscopic large scale data mining 
•  Real examples
•  Summary and further directions WHAT DOES LARGE SCALE 

MEAN?
Evolution as massive parallel processing
The challenges of data mining
Kaleidoscopic large scale data mining 
Real-world examples
Wrapping up

1285



What Does Large Scale Mean?

•  Many scientific disciplines are currently 
experiencing a massive “data deluge”

•  Vast amounts of data are available thanks to 
initiatives such as the human genome project or 
the virtual human physiome

•  Data mining technologies need to deal with large 
volumes of data, scale accordingly, extract 
accurate models, and provide new insight

•  So, what does large mean?

Large Meaning… Piles of Records

•  Datasets with a high number of records
– This is probably the most visible dimension of large 

scale data mining

  

– GenBank (the 
genetic sequences 
database from the 
NIH) contains (Feb, 
2008) more than 82 
million gene 
sequences and 
more than 85 billion 
nucleotides

  

Large Meaning… Piles of Records

•  Datasets with a high number of records
– Not all data comes from the natural sciences
– Netflix Prize:  

•  Generating better movie "
recommending methods "
from customer ratings

•  Training set of 100M ratings"
from over 480K customers "
on 78K movies

•  Data collected from October "
1998 and December, 2005

•  Competition lasted from
   2006 to 2009

•  Think big: Twitter, Facebook? 

Large Meaning… High Dimensionality

•  High dimensionality domains
–  Sometimes each record is characterized by hundreds, thousands 

(or even more) features
–  Microarray technology (as many other 

post-genomic data generation 
techniques) can routinely generate 
records with tens of thousands of 
variables

–  Creating each record is usually very 
costly, so datasets tend to have a very 
small number of records. This 
unbalance between number of records 
and number of variables is yet another 
challenge    

(Reinke, 2006, Image licensed under Creative Commons) 
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Large Meaning… Rare

•  Class unbalance
– Challenge to generate accurate classification models 

where not all classes are equally represented
– Contact Map prediction "

datasets (briefly explained "
later in the tutorial) routinely "
contain millions of instances "
from which less than 2% are"
 positive examples

– Tissue type identification is "
highly unbalance—see figure

(Llora, Priya, Bhargava, 2009) 

Large Meaning… Lots of Classes 

•  Yet another dimension of difficulty
•  Reuters-21578 dataset is a text categorization 

task with 672 categories
•  Very related to the class unbalance problem
•  Machine learning methods need to make an extra effort to 

make sure that underrepresented data is taken into 
account properly 

Large Meaning… Complex Concepts

•  Bernado and Ho (2005) propose complexity measures for 
classification tasks

•  Metrics to measure difficulty in classifiers
–  9 different ones studied
–  Geometry
–  Sparseness 
–  Dimensionality
–  Sample size

•  Metric creation is a hard problem since dimensions of 
complexity may be intertwined

EVOLUTION AS MASSIVE 
PARALLEL PROCESSING

What does large scale mean?

The challenges of data mining
Kaleidoscopic large scale data mining 
Real-world examples
Wrapping up"
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Evolution and Parallelism

•  Evolutionary algorithms are parallelism rich
•  A population is data rich (individuals)
•  Genetic operators are highly parallel operations
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Ind. 1

Ind. 2

Ind. n

evaluation selection crossover 

Operations and Their Dependencies

•  No dependencies  embarrassing parallelism
–  Fitness evaluation
–  Each individual can be evaluated simultaneously

•  Weak dependencies  synchronization points
–  Crossover
–  Once the parents are available the operator can be applied

•  Strong dependencies  careful inspection (bottlenecks)
–  Selection
–  The complete population needs to be available
–  The wrong implementation can introduce large serial execution 

chunks

Other Perks

•  Need to repeat experiments
•  Evaluation can be costly
•  Some evolutionary models 

–  Mimic natural evolution introducing spatial relations (remember 
Darwin’s islands?)

–  Are model after decentralized models (cellular automata like)

•  Based on the nature of evolutionary algorithms and the 
above ingredients there multiple parallelization models has 
been proposed (Cantu-Paz, 2000; Alba, 2005)

But?

•  What about the data?
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THE CHALLENGES OF DATA 
MINING

What does large scale mean?
Evolution as massive parallel processing

Kaleidoscopic large scale data mining 
Real-world examples
Wrapping up"

The Challenges of Data Mining

•  We have seen in the previous slides how 
evolutionary algorithms have a natural tendency 
for parallel processing, hence being suitable for 
large-scale data mining

•  However, data mining presents a challenge that 
goes beyond pure optimization, which is that 
evaluation is based on data, not just on a fitness 
formula

•  Holding the data is the first bottleneck that large-
scale data mining needs to face
– Efficiently parsing the data
– Proper data structures to achieve the minimum memory 

footprint
•  It may sound like just a matter of programming, but it can 

make a difference
•  Specially important when using specialized hardware (e.g. 

CUDA)

– Optimized publicly available data handling libraries exist 
(e.g. the HDF5 library)

The Challenges of Data Mining The Challenges of Data Mining

•  Usually it is not possible to hold all the training 
data in memory 
– Partition it and use different subsets of data at a time

•  Windowing mechanisms, we will talk about them later
•  Efficient strategies of use of CUDA technology

– Hold different parts of the data in different machines
•  Parallel processing, we will also talk about this later

•  Can also data richness become a benefit not a 
problem?
– Data-intensive computing
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The Challenges of Data Mining

•  Classic challenges of machine learning
– Over-learning

•  Our models need to have good predictive capacity

– Generating interpretable solution
•  Discovering useful new knowledge inside the data 

KALEIDOSCOPIC LARGE SCALE 
DATA MINING

What does large scale mean?
Evolution as massive parallel processing
The challenges of data mining

Real-world examples
Wrapping up"

Large Scale Data Mining Using GBML 

•  Efficiency enhancement techniques 
•  Hardware acceleration techniques
•  Parallelization models
•  Data-intensive computing 

Prelude: Efficiency Enhancement

•  Review of methods and techniques explicitly 
designed for data mining purposes

•  Evolutionary computation efficiency enhancement 
techniques could also be applied (and we show 
some examples of this too)

•  For a good tutorial on efficiency enhancement 
methods, please see GECCO 2005 Tutorial on 
efficiency enhancement by Kumara Sastry at 

–  http://www.slideshare.net/kknsastry/principled-efficiency-enhancement-techniques 
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Efficiency Enhancement Techniques 

•  Goal: Modify the data mining methods to improve 
their efficiency without special/parallel hardware

•  Remember: 
–  An individual can be a rule, or a rule set, or a decision tree…
–  Individuals parameters need to be estimated (accuracy, generality…)

•  Included in this category are: 
–  Windowing mechanisms
–  Exploiting regularities in the data
–  Fitness surrogates
–  Hybrid methods

Windowing Mechanisms 

•  Classic machine learning concept
–  Do we need to use all the training data all the time?
–  Using a subset would result in faster evaluations
–  How do we select this subset and how often is it changed?
–  How accurate the fitness estimation will be? Will it favor modularity?

•  Freitas (2002) proposed a classification of these methods in 
three types:
–  Individual-wise: Changing the subset of data for each evaluated 

solution
–  Generation-wise: Changing the subset of data at each generation of 

the evolutionary algorithm
–  Run-wise: Selecting a single subset of data for a whole run of a GA

Windowing Mechanisms - ILAS 

•  Incrementing Learning with Alternating Strata (Bacardit, 2004)
•  Generation-wise windowing mechanism
•  Training set is divided in non-overlapping strata
•  Each GA iteration uses a different strata, using a round-robin 

policy (evaluation speedup linearly with the number of strata)

•  This mechanism also introduces some extra generalization 
pressure, since good solutions need to survive multiple strata

Training set 

0 Ex/n 2·Ex/n Ex 3·Ex/n 

Iterations 

0 Iter 

Windowing Mechanisms - ILAS 

•  How far can we increase the 
number of strata?

•  Problem with ~260K instances 
and 150 strata

•  Knowledge learnt on different 
strata does not integrate 
successfully into a single 
solution (if too many are used)

•  We have to make sure that 
each strata is a good 
representation of the overall 
training set

•  Success model of the number 
of strata (Bacardit et al., 2004) 

r = #rules in solution, s = #strata,  
p = prob. rule represented in strata,  
D = size of the training set 
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Exploiting Regularities

•  The instances in the training set do not usually cover 
uniformly the search space

•  Instead, there are some recurrent patterns and regularities, 
that can be exploited for efficiency purposes

•  (Giraldez et al., 2005) proposed a method that 
precomputes the possible classifications of a rule

•  As they only dealt with discrete/discretized attributes, they 
generate a tree structure to efficiently know which 
examples belong to each value of each attribute

•  Furthermore, rule matches are the intersection of all these 
subsets of examples 

Exploiting Regularities in the Data

•  Other methods exploit a different regularity: usually 
not all attributes are equally important

•  Example: Prediction of a Bioinformatics dataset 
(Bacardit and Krasnogor, 2009)
•  Att Leu-2 ∈ [-0.51,7] and Glu ∈ [0.19,8] and Asp+1 ∈ 

[-5.01,2.67] and Met+1∈ [-3.98,10] and Pro+2 ∈ 
[-7,-4.02] and Pro+3 ∈ [-7,-1.89] and  Trp+3 ∈ [-8,13] 
and Glu+4 ∈ [0.70,5.52] and Lys+4 ∈ [-0.43,4.94]  
alpha

•  Only 9 attributes out of 300 were actually in the rule

Exploiting Regularities in the Data

•  Function match (instance x, rule r)
Foreach attribute att in the domain

If att is relevant in rule r and
   (x.att < r.att.lower or x.att > r.att.upper)

Return false
EndIf

EndFor
Return true

•  Given the previous example of a rule, 293 
iterations of this loop are wasted !! 

Exploiting Regularities in the Data

•  How to exploit this phenomenon?
•  Reordering the attributes in the domain from 

specific to general (Butz et al., 2008)
– Afterwards, starting the match process with the most 

specific one
– The most specific attributes are usually those that make 

the process break. Thus, reducing usually the number 
of iterations in the match loop

– Still, in the cases where a whole rule matches, the 
irrelevant attributes need to be evaluated
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Exploiting Regularities in the Data

•  Could we completely get rid of the irrelevant 
attributes?
– The attribute list knowledge representation (ALKR) 

(Bacardit, Burke and Krasnogor, 2009)
– This representation automatically identifies which are the 

relevant/specific attributes for each rule
– Only tracks information about them

Exploiting Regularities in the Data

•  In ALKR two operators (specialize and generalize) 
add or remove attributes from the list with a given 
probability, hence exploring the rule-wise space of 
the relevant attributes   

•  ALKR match process is more efficient, however 
crossover is costlier and it has two extra operators

•  Since ALKR chromosome only contains relevant 
information, the exploration process is more 
efficient. On large data sets it managed to 
generate better solutions

Fitness Surrogates

•  In evolutionary algorithms, we can construct a 
function that estimates the evaluation of our 
solutions using the training set. This is usually 
known as a fitness surrogate

•  Two recent works (Orriols et al., 2007) and (Llorà 
et al., 2007) use the structural information 
extracted from the model building process of 
competent genetic algorithms to build such a 
function

•  Cheap surrogates can help avoid costly 
evaluations that tend to dominate execution time

Hybrid Methods

•  The Memetic Pittsburgh Learning Classifier 
Systems (MPLCS) (Bacardit and Krasnogor, 2009) 
combines the classic GA exploration operators 
with local search (LS) methods.
– The LS operators use information extracted from the 

evaluation process
– After evaluating a rule set we know 

•  Which rules are good and which rules are bad
•  Which parts of each rule are good and which parts are bad 
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Hybrid Methods

•  Two kinds of LS operators
– Rule set-wise operator

•  Takes N parents (N can be > 2) and generates a single 
offspring with the best rules of all of them

– Rule-wise operators that edit rules
•  Rule cleaning – drop conditions that misclassify
•  Rule splitting – find the exact spot where a rule can be splitted 

and the generated rules cleaned
•  Rule generalizing –update a rule so it can correctly classify 

more examples

Enough Talk! Where is the Big Iron?

•  Let’s start with a simple hardware acceleration example

Hardware Acceleration Techniques

•  Commodity hardware provides simple vectorized 
operations

•  Result of the gaming world
•  Usually operate over 128 bits (4 floats)
•  Vector units are able to execute ops in 1 cycle 
•  IBM implemented Altivec
•  Intel started with MMX and then SSE and derivates
•  AMD 3DNow!, 3DNow+! 

A Simple Example: XCSlib

•  Llora and Sastry (2005) show its usefulness. Also key to 
billion bit effort by Golberg, Sastry, and Llora (2007)

•  XCSlib version 0.34 (http://xcslib.sourceforge.net/)
–  Based on a C++ code base
–  Very flexible to modify/add new component

•  The first step: Gather the facts
•  Need to get a clear picture of the execution profile

–  Shark freely available on Mac OS X
–  Gprof on Unix systems
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XCSlib

•  Shark G4 platform profile (same behavior displayed on the AMD platform)

•  The rule matching is conducted by ternary_condition::match!

ternary_condition::match!

XCSlib 
•  The main cycle consumer 
•  Each rule loops to match
•  Good candidate for HW 

acceleration
•  If we accelerate the inner 

loop we can drop the time 
spent matching

Extending Toward Vector Instructions

Idea: Loop unroll, using vector operations to 
manipulate four integers at once (pack 64 

conditions in a single match step)

The Vector-based Matching (SSE2)
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Speedup After Vectorizing

Benefits of caching 

Hardware Acceleration On Steroids

•  NVIDIA’s Computer Unified Device Architecture (CUDA) is a 
parallel computing architecture that exploits the capacity 
within NVIDIA’s Graphic Processor Units

•  CUDA runs thousands of threads at the same time  
Single Program, Multiple Data paradigm

•  In the last few years GPUs have been extensively used in 
the evolutionary computation field 
–  Many papers and applications are available at http://

www.gpgpgpu.com

•  The use of GPGPUs in Machine Learning involves a 
greater challenge because it deals with more data but this 
also means it is potentially more parallelizable

CUDA architecture CUDA memories

•  Different types of memory with different access speed
–  Global memory (slow and large)
–  Shared memory (block-wise; fast but quite small)
–  Constant memory (very fast but very small)

•  The memory is limited
•  The memory copy operations involve a considerable 

amount of execution time
•  Since we are aiming to work with large scale datasets a 

good strategy to minimize the execution time is based on 
the memory usage 
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CUDA in supervised learning
•  The match process is the stage 

computationally more expensive
•  However, performing only the match 

inside the GPU means downloading 
from the card a structure of size O
(NxM) (N=population size, 
M=training set size)

•  In most cases we don’t need to 
know the specific matches of a 
classifier, just how many (reduce the 
data)

•  Performing the second stage also 
inside the GPU allows the system to 
reduce the memory traffic to O(N)

CUDA fitness computation for the 
BioHEL GBML system

•  BioHEL [Bacardit, 
Burke and 
Krasnogor, 2009] 
is a GBML method 
designed for large-
scale datasets

•  We recently 
extended it with a 
CUDA-based 
fitness 
computation 
(Franco, Krasnogor 
& Bacardit, 2010)

Performance of BioHEL using CUDA

•  We used CUDA in a Tesla C1060 card with 4GB of global 
memory, and compared the run-time to that of Intel Xeon 
E5472 3.0GHz processors

•  Biggest speedups obtained in large problems (|T| or #Att), 
specially in domains with continuous attributes

•  Run time for the largest dataset reduced from 2 weeks to 
8 hours

Integration of CUDA and ILAS
•  The speedups of these two techniques can stack one on 

top of the other
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Parallelization Models

•  Coarse-grained parallelism
•  Fine-grained parallelism

Coarse-grained Parallelism

•  By coarse-grain parallelism we are talking about 
executing independently several runs

•  As there is no communication, the speedup is 
always linear 

•  In which situations can we do this?
– Evolutionary algorithms are stochastic methods, we 

need to run always our methods several times. If we 
have the parallel hardware, this is a trivial way of gaining 
efficiency

Coarse-grained Parallelism

•  There is, however, a more defined way of performing 
coarse-grain parallelism: ensemble learning

•  These techniques integrate the collective predictions of a 
set of models in some principled fashion

•  These models can be trained independently

Coarse-grained Parallelism

•  Ensemble for consensus prediction (Bacardit and 
Krasnogor, 2008) 

–  Similar technique to bagging
1.  Evolutionary data mining method is run N times on the original 

training set, each of them with a different random seed
2.  From each of the N runs, a rule set is generated
3.  Exploitation stage: For each new instance, the N models 

produce a prediction. The majority class is used as the 
ensemble prediction

–  Ensembles evaluated on 25 UCI repository datasets 
using the Gassist LCS

–  In average the ensemble accuracy was  2.6% higher
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Coarse-grained Parallelism

•  Ensemble for consensus prediction
–  Prediction of a difficult bioinformatics dataset

–  Accuracy increased of ~9% with 25 rule sets

More Corse-Grain

•  If evaluation is extremely costly
•  Run the same algorithm with the same seed
•  Same population everywhere
•  Each algorithm only evaluates a chunk of the population
•  The fitness estimates are broadcasted (e.g. MPI)
•  Minimal communication possible (only the fitness value)
•  All algorithms run the same genetic operators on identical 

population individuals (as all run using the same seed)

•  The NAX system (Llora, X., Priya, A., and Bhragava, 2007)  

In a Picture Fine-grained parallelism

•  Exploit maximum parallelism
•  Impose an spatial topology
•  Define neighborhood operators
•  GALE (Llora, 2002)
•  Easy implementable on shared-memory machines
•  Minimizes the computation/communication ratio for 

distributed memory implementations
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GALE: Topology

•  A cell contains 0 or 1 individual
•  A cell is surrounded by 8 neighbors
•  Subpopulations spatially defined by the 

adjacent cellsEmpty cell  Occupied cell (1 ind) 

GALE: Merge

•  Merge

1.  Choose a neighbor

2.  Recombine the genetic material

3.  Replace the individual

mate 

GALE: Split

•  Split

1. Replicate and mutate

2. Occupy
–   Empty cell with higher 

number of neighbors"

–   Occupied cell with the worst 
neighbor (no empty cell 
available)

GALE: Survival

•  0-1 Neighbors

•  2-6 Neighbors 

•  7-8 Neighbors 

•   Isolated 

•   psr(ind) fitness proportional 

•   death  leave cell empty 

•   Spongy 

•   psr(ind) related to neighbors 

•   death  leave cell empty 

•   Crowded 

•   psr(ind) = 0 

•   death  replace by the best 
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GALE: Data Distribution Data-intensive Computing

•  Usually refers to:
–  Infrastructure
–  Programming techniques/paradigms

•  Google made it main stream after their MapReduce model
•  Yahoo! provides and open source implementation

–  Hadoop (MapReduce)
–  HDFS (Hadoop distributed filesystem)
–  Mahout (Machine Learning methods)

•  Engineered to store petabytes reliably on commodity 
hardware (fault tolerant)

•  Map: Equivalent to the map operation on functional 
programming

•  Reduce: The reduction phase after maps are computed 

Meandre: NCSA’s "
Data-Intensive Infrastructure

•  Extend the programming limitation of MapReduce
•  Execution Paradigms

– Conventional programs perform computational tasks by 
executing a sequence of instructions.

– Data driven execution revolves around the idea of 
applying transformation operations to a flow or stream 
of data when it is available. 

Meandre: The Dataflow Component

•  Data dictates component execution semantics

Component 

P 

Inputs Outputs 

Descriptor in RDF"
of its behavior

The component "
implementation
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Meandre: Flow (Complex Tasks)

•  A flow is a collection of connected components

Read 

P Merge 

P 

Do 

P 

Show 

P 

Get 

P 

Dataflow execution 

Your Point Being?

•  Evolutionary algorithms can be modeled using data-
intensive modeling

•  Imagine a stream of individuals being process by 
components

•  A single model implementation automatically parallelizable 
where needed

Collecting The Benefits

Real-World Examples

What does large scale mean?
Evolution as massive parallel processing
The challenges of data mining
Kaleidoscopic large scale data mining

Wrapping up"
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Real-World  Examples 

•  Example to present
–  Protein Structure & Contact Map Prediction (Bacardit et al., 2009)
–  Cancer prediction (Llora et al. 2007; Llora et al. 2009)

•  A set of LCS applications to Data Mining is collected in 
(Bull et al., 2008)

Protein Structure Prediction

•  Protein Structure Prediction (PSP) aims to predict 
the 3D structure of a protein based on its primary 
sequence

Primary  
Sequence 

3D  
Structure 

Protein Structure Prediction

•  Beside the overall 3D PSP (an optimization problem), 
several structural aspects can be predicted for each 
protein residue
–  Coordination number
–  Solvent accessibility
–  Etc.

•  These problems can be modelled in may ways:
–  Regression or classification problems
–  Low/high number of classes
–  Balanced/unbalanced classes
–  Adjustable number of attributes

•  Ideal benchmarks !!
•  http://www.infobiotic.net/PSPbenchmarks/

Contact Map Prediction

•  Two residues of a chain are said to be in contact if their distance 
is less than a certain threshold

•  Contact Map (CM): binary matrix that contains a 1 for a cell if 
the residues at the row & column are in contact, 0 otherwise

•  This matrix is very sparse, in real proteins there are less than 2% 
of contacts 

•  Highly unbalanced dataset

Contact Primary  
Sequence 

Native State 
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Contact Map Prediction

•  (Bacardit et al. 2009) participated in the CASP8 competition
•  CASP = Critical Assessment of Techniques for Protein Structure 

Prediction. Biannual competition 
•  Every day, for about three months, the organizers release some 

protein sequences for which nobody knows the structure (129 
sequences were released in CASP9, in 2010)

•  Each prediction group is given three weeks to return their predictions
•  If the machinery is not well oiled, it is not feasible to participate !!
•  For CM, prediction groups have to return a list of predicted contacts 

(they are not interested in non-contacts) and, for each predicted pair of 
contacting residues, a confidence level

•  The evaluation for CM ranks this list by the confidence, and calculates 
the accuracy of the top L/x predictions (L = length of chain, x = 
typically 10)    

Contact Map Prediction: Hands on

•  Training set of 2413 proteins selected to 
represent a broad set of sequences

–  32 million pairs of amino-acids (instances in the training 
set) with less than 2% of real contacts

–  Each instance is characterized by up to 631 attributes

•  50 samples of ~660000 examples are generated 
from the training set. Each sample contains two 
no-contact instances for each contact instance

•  The BioHEL GBML method (Bacardit et al., 
2009) was run 25 times on each sample

•  An ensemble of 1250 rule sets (50 samples x 25 
seeds) performs the contact maps predictions 
using simple consensus voting

•  Confidence is computed based on the votes 
distribution in the ensemble

Training	  set	  

x50	  

x25	  

Consensus	  

Predic5on
s	  

Samples	  

Rule	  sets	  

Results of Contact Map prediction

•  The subset of the most difficult target (Free Modelling 
targets) of CASP9 were used to evaluate CM

•  Out predictor obtained an average accuracy of 23.6%
•  Do you think it is low?

–  It is more than 11 times higher than a random prediction
–  The predictor was the best Ab Initio method in the competition 

•  Overall, tackling this problem has forced us to address a 
broad range of bottlenecks in DM methods
–  Code bottlenecks
–  Memory footprint bottlenecks
–  Scalability bottlenecks 

Prostate Cancer Diagnosis

•  Biopsy-staining-microscopy-manual recognition is the diagnosis 

procedure for the last 150 years. 

GECCO 2007 Llorà, Reddy, Matesic & Bhargava 80 
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Advances on Fourier Transform "
IR Imaging

•  Infrared spectroscopy is a classical technique for 

measuring chemical composition of specimens.

•  At specific frequencies, the vibrational modes of 

molecules are resonant with the frequency of infrared 

light.

•  Microscope has develop to the point that resolution that 

match a pixel with a cell (and keep improving).

•  It allows to start from the same data (stained tissue)

•  Generates larges volumes of data

GECCO 2007 Llorà, Reddy, Matesic & Bhargava 81 

Advances on Fourier Transform "
IR Imaging

GECCO 2007 Llorà, Reddy, Matesic & Bhargava 82 

Spectrum Analysis

•  Microscope generate a lot of data

•  Per spot the spectra signature requires GBs of storage

•  Bhargava et al. (2005) feature extraction for tissue identification

•  More than 200 potential features per spectrum (cell/pixel)

•  Firsts methodology that allowed tissue identification

GECCO 2007 Llorà, Reddy, Matesic & Bhargava 83 

Prostate Cancer Data 

GECCO 2007 Llorà, Reddy, Matesic & Bhargava 84 

1. Tissue identification
–  Modeled as a supervised learning problem

–  (Features, tissue type)

–  The goal: Accurately retrieve epithelial tissue

2. Tissue diagnosis
–  Modeled as a supervised learning problem

–  (Features, diagnosis)

–  The goal: Accurately diagnose each cell (pixel) and 
aggregate those diagnosis to generate a spot (patient) 
diagnosis 
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GBML Identifies Tissue Types
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GBML Identifies Tissue Types

•  Accuracy >96%

•  Mistakes on minority classes (not targeted) and boundaries
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Filtered Tissue is Accurately Diagnosed
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Filtered Tissue is Accurately Diagnosed

•  Pixel crossvalidation accuracy using NAX (87.34%)
•  Spot accuracy

–  68 of 69 malignant spots 
–  70 of 71 benign spots

•  Human-competitive computer-aided diagnosis system 
is possible (Humies 2007 Bronze award)

•  First published results that fall in the range of human 
error (<5%)

Wrapping Up

What does large scale mean?
Evolution as massive parallel processing
The challenges of data mining
Kaleidoscopic large scale data mining
Real-world examples

Wrapping  Up

•  We have shown in this tutorial how GBML methods have 
high potential for mining large-scale datasets

•  They are natural parallel processing machines
•  Recent improvements in many dimensions of the learning 

process
–  Representations
–  Learning paradigms
–  Inference mechanisms
–  Hybridization

The Game Has a New Name

•  The exception is becoming norm
– Efficient parallel designs
– Efficiency enhancement methods
– Hardware support (SSE, CUDA, etc.)

•  However, all these components cannot be used 
blindly, they have to be adjusted properly, 
accordingly to the characteristics/dimensions of 
the problem
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Better Understanding

•  Theoretical analysis of the different facets of a GBML 
system can help

•  Understand better why/when can the components 
perform well

•  Design robust policies that can take the best of the 
techniques at hand

•  Provide insight on parameterization of methods
–  If we would like the community to use GBML methods, we have to 

make them easy to use

•  Some work already exists (Butz, 2006; Franco et al., 
2011), but we still have a long road ahead of us

Do not Be Shy

•  GBML systems are highly flexible, with good 
explanatory power, and can have good scalability

•  Go and give it a shoot!
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