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Machine Learning and Data Mining


  Core of Data Mining  Machine 
learning: How to construct programs 
that automatically learn from 
experience [Mitchell, 1997]
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What Will We Cover?


•  What does large scale mean?

•  Evolution as massive parallel processing

•  The challenges of data mining

•  Kaleidoscopic large scale data mining 

•  Real examples

•  Summary and further directions
 WHAT DOES LARGE SCALE 

MEAN?

Evolution as massive parallel processing

The challenges of data mining

Kaleidoscopic large scale data mining 

Real-world examples

Wrapping up
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What Does Large Scale Mean?


•  Many scientific disciplines are currently 
experiencing a massive “data deluge”


•  Vast amounts of data are available thanks to 
initiatives such as the human genome project or 
the virtual human physiome


•  Data mining technologies need to deal with large 
volumes of data, scale accordingly, extract 
accurate models, and provide new insight


•  So, what does large mean?


Large Meaning… Piles of Records


•  Datasets with a high number of records

– This is probably the most visible dimension of large 

scale data mining



 
 


– GenBank (the 
genetic sequences 
database from the 
NIH) contains (Feb, 
2008) more than 82 
million gene 
sequences and 
more than 85 billion 
nucleotides



 
 


Large Meaning… Piles of Records


•  Datasets with a high number of records

– Not all data comes from the natural sciences

– Netflix Prize:  


•  Generating better movie "
recommending methods "
from customer ratings


•  Training set of 100M ratings"
from over 480K customers "
on 78K movies


•  Data collected from October "
1998 and December, 2005


•  Competition lasted from

   2006 to 2009


•  Think big: Twitter, Facebook? 


Large Meaning… High Dimensionality


•  High dimensionality domains

–  Sometimes each record is characterized by hundreds, thousands 

(or even more) features

–  Microarray technology (as many other 

post-genomic data generation 
techniques) can routinely generate 
records with tens of thousands of 
variables


–  Creating each record is usually very 
costly, so datasets tend to have a very 
small number of records. This 
unbalance between number of records 
and number of variables is yet another 
challenge  
 
 


(Reinke, 2006, Image licensed under Creative Commons) 
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Large Meaning… Rare


•  Class unbalance

– Challenge to generate accurate classification models 

where not all classes are equally represented

– Contact Map prediction "

datasets (briefly explained "
later in the tutorial) routinely "
contain millions of instances "
from which less than 2% are"
 positive examples


– Tissue type identification is "
highly unbalance—see figure


(Llora, Priya, Bhargava, 2009) 

Large Meaning… Lots of Classes 


•  Yet another dimension of difficulty

•  Reuters-21578 dataset is a text categorization 

task with 672 categories

•  Very related to the class unbalance problem

•  Machine learning methods need to make an extra effort to 

make sure that underrepresented data is taken into 
account properly 


Large Meaning… Complex Concepts


•  Bernado and Ho (2005) propose complexity measures for 
classification tasks


•  Metrics to measure difficulty in classifiers

–  9 different ones studied

–  Geometry

–  Sparseness 

–  Dimensionality

–  Sample size


•  Metric creation is a hard problem since dimensions of 
complexity may be intertwined


EVOLUTION AS MASSIVE 
PARALLEL PROCESSING


What does large scale mean?


The challenges of data mining

Kaleidoscopic large scale data mining 

Real-world examples

Wrapping up"

1287



Evolution and Parallelism


•  Evolutionary algorithms are parallelism rich

•  A population is data rich (individuals)

•  Genetic operators are highly parallel operations


Ind. 1


Ind. 2


Ind. n


Ind. 1


Ind. 2


Ind. n


Ind. 1


Ind. 2


Ind. n


Ind. 1


Ind. 2


Ind. n


evaluation selection crossover 

Operations and Their Dependencies


•  No dependencies  embarrassing parallelism

–  Fitness evaluation

–  Each individual can be evaluated simultaneously


•  Weak dependencies  synchronization points

–  Crossover

–  Once the parents are available the operator can be applied


•  Strong dependencies  careful inspection (bottlenecks)

–  Selection

–  The complete population needs to be available

–  The wrong implementation can introduce large serial execution 

chunks


Other Perks


•  Need to repeat experiments

•  Evaluation can be costly

•  Some evolutionary models 


–  Mimic natural evolution introducing spatial relations (remember 
Darwin’s islands?)


–  Are model after decentralized models (cellular automata like)


•  Based on the nature of evolutionary algorithms and the 
above ingredients there multiple parallelization models has 
been proposed (Cantu-Paz, 2000; Alba, 2005)


But?


•  What about the data?
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THE CHALLENGES OF DATA 
MINING


What does large scale mean?

Evolution as massive parallel processing


Kaleidoscopic large scale data mining 

Real-world examples

Wrapping up"

The Challenges of Data Mining


•  We have seen in the previous slides how 
evolutionary algorithms have a natural tendency 
for parallel processing, hence being suitable for 
large-scale data mining


•  However, data mining presents a challenge that 
goes beyond pure optimization, which is that 
evaluation is based on data, not just on a fitness 
formula


•  Holding the data is the first bottleneck that large-
scale data mining needs to face

– Efficiently parsing the data

– Proper data structures to achieve the minimum memory 

footprint

•  It may sound like just a matter of programming, but it can 

make a difference

•  Specially important when using specialized hardware (e.g. 

CUDA)


– Optimized publicly available data handling libraries exist 
(e.g. the HDF5 library)


The Challenges of Data Mining
 The Challenges of Data Mining


•  Usually it is not possible to hold all the training 
data in memory 

– Partition it and use different subsets of data at a time


•  Windowing mechanisms, we will talk about them later

•  Efficient strategies of use of CUDA technology


– Hold different parts of the data in different machines

•  Parallel processing, we will also talk about this later


•  Can also data richness become a benefit not a 
problem?

– Data-intensive computing
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The Challenges of Data Mining


•  Classic challenges of machine learning

– Over-learning


•  Our models need to have good predictive capacity


– Generating interpretable solution

•  Discovering useful new knowledge inside the data 


KALEIDOSCOPIC LARGE SCALE 
DATA MINING


What does large scale mean?

Evolution as massive parallel processing

The challenges of data mining


Real-world examples

Wrapping up"

Large Scale Data Mining Using GBML 


•  Efficiency enhancement techniques 

•  Hardware acceleration techniques

•  Parallelization models

•  Data-intensive computing 


Prelude: Efficiency Enhancement


•  Review of methods and techniques explicitly 
designed for data mining purposes


•  Evolutionary computation efficiency enhancement 
techniques could also be applied (and we show 
some examples of this too)


•  For a good tutorial on efficiency enhancement 
methods, please see GECCO 2005 Tutorial on 
efficiency enhancement by Kumara Sastry at 


–  http://www.slideshare.net/kknsastry/principled-efficiency-enhancement-techniques 
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Efficiency Enhancement Techniques 


•  Goal: Modify the data mining methods to improve 
their efficiency without special/parallel hardware


•  Remember: 

–  An individual can be a rule, or a rule set, or a decision tree…

–  Individuals parameters need to be estimated (accuracy, generality…)


•  Included in this category are: 

–  Windowing mechanisms

–  Exploiting regularities in the data

–  Fitness surrogates

–  Hybrid methods


Windowing Mechanisms 


•  Classic machine learning concept

–  Do we need to use all the training data all the time?

–  Using a subset would result in faster evaluations

–  How do we select this subset and how often is it changed?

–  How accurate the fitness estimation will be? Will it favor modularity?


•  Freitas (2002) proposed a classification of these methods in 
three types:

–  Individual-wise: Changing the subset of data for each evaluated 

solution

–  Generation-wise: Changing the subset of data at each generation of 

the evolutionary algorithm

–  Run-wise: Selecting a single subset of data for a whole run of a GA


Windowing Mechanisms - ILAS 


•  Incrementing Learning with Alternating Strata (Bacardit, 2004)

•  Generation-wise windowing mechanism

•  Training set is divided in non-overlapping strata

•  Each GA iteration uses a different strata, using a round-robin 

policy (evaluation speedup linearly with the number of strata)


•  This mechanism also introduces some extra generalization 
pressure, since good solutions need to survive multiple strata


Training set 

0 Ex/n 2·Ex/n Ex 3·Ex/n 

Iterations 

0 Iter 

Windowing Mechanisms - ILAS 


•  How far can we increase the 
number of strata?


•  Problem with ~260K instances 
and 150 strata


•  Knowledge learnt on different 
strata does not integrate 
successfully into a single 
solution (if too many are used)


•  We have to make sure that 
each strata is a good 
representation of the overall 
training set


•  Success model of the number 
of strata (Bacardit et al., 2004) 


r = #rules in solution, s = #strata,  
p = prob. rule represented in strata,  
D = size of the training set 
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Exploiting Regularities


•  The instances in the training set do not usually cover 
uniformly the search space


•  Instead, there are some recurrent patterns and regularities, 
that can be exploited for efficiency purposes


•  (Giraldez et al., 2005) proposed a method that 
precomputes the possible classifications of a rule


•  As they only dealt with discrete/discretized attributes, they 
generate a tree structure to efficiently know which 
examples belong to each value of each attribute


•  Furthermore, rule matches are the intersection of all these 
subsets of examples 


Exploiting Regularities in the Data


•  Other methods exploit a different regularity: usually 
not all attributes are equally important


•  Example: Prediction of a Bioinformatics dataset 
(Bacardit and Krasnogor, 2009)

•  Att Leu-2 ∈ [-0.51,7] and Glu ∈ [0.19,8] and Asp+1 ∈ 

[-5.01,2.67] and Met+1∈ [-3.98,10] and Pro+2 ∈ 
[-7,-4.02] and Pro+3 ∈ [-7,-1.89] and  Trp+3 ∈ [-8,13] 
and Glu+4 ∈ [0.70,5.52] and Lys+4 ∈ [-0.43,4.94]  
alpha


•  Only 9 attributes out of 300 were actually in the rule


Exploiting Regularities in the Data


•  Function match (instance x, rule r)

Foreach attribute att in the domain


If att is relevant in rule r and

   (x.att < r.att.lower or x.att > r.att.upper)


Return false

EndIf


EndFor

Return true


•  Given the previous example of a rule, 293 
iterations of this loop are wasted !! 


Exploiting Regularities in the Data


•  How to exploit this phenomenon?

•  Reordering the attributes in the domain from 

specific to general (Butz et al., 2008)

– Afterwards, starting the match process with the most 

specific one

– The most specific attributes are usually those that make 

the process break. Thus, reducing usually the number 
of iterations in the match loop


– Still, in the cases where a whole rule matches, the 
irrelevant attributes need to be evaluated
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Exploiting Regularities in the Data


•  Could we completely get rid of the irrelevant 
attributes?

– The attribute list knowledge representation (ALKR) 

(Bacardit, Burke and Krasnogor, 2009)

– This representation automatically identifies which are the 

relevant/specific attributes for each rule

– Only tracks information about them


Exploiting Regularities in the Data


•  In ALKR two operators (specialize and generalize) 
add or remove attributes from the list with a given 
probability, hence exploring the rule-wise space of 
the relevant attributes   


•  ALKR match process is more efficient, however 
crossover is costlier and it has two extra operators


•  Since ALKR chromosome only contains relevant 
information, the exploration process is more 
efficient. On large data sets it managed to 
generate better solutions


Fitness Surrogates


•  In evolutionary algorithms, we can construct a 
function that estimates the evaluation of our 
solutions using the training set. This is usually 
known as a fitness surrogate


•  Two recent works (Orriols et al., 2007) and (Llorà 
et al., 2007) use the structural information 
extracted from the model building process of 
competent genetic algorithms to build such a 
function


•  Cheap surrogates can help avoid costly 
evaluations that tend to dominate execution time


Hybrid Methods


•  The Memetic Pittsburgh Learning Classifier 
Systems (MPLCS) (Bacardit and Krasnogor, 2009) 
combines the classic GA exploration operators 
with local search (LS) methods.

– The LS operators use information extracted from the 

evaluation process

– After evaluating a rule set we know 


•  Which rules are good and which rules are bad

•  Which parts of each rule are good and which parts are bad 
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Hybrid Methods


•  Two kinds of LS operators

– Rule set-wise operator


•  Takes N parents (N can be > 2) and generates a single 
offspring with the best rules of all of them


– Rule-wise operators that edit rules

•  Rule cleaning – drop conditions that misclassify

•  Rule splitting – find the exact spot where a rule can be splitted 

and the generated rules cleaned

•  Rule generalizing –update a rule so it can correctly classify 

more examples


Enough Talk! Where is the Big Iron?


•  Let’s start with a simple hardware acceleration example


Hardware Acceleration Techniques


•  Commodity hardware provides simple vectorized 
operations


•  Result of the gaming world

•  Usually operate over 128 bits (4 floats)

•  Vector units are able to execute ops in 1 cycle 

•  IBM implemented Altivec

•  Intel started with MMX and then SSE and derivates

•  AMD 3DNow!, 3DNow+! 


A Simple Example: XCSlib


•  Llora and Sastry (2005) show its usefulness. Also key to 
billion bit effort by Golberg, Sastry, and Llora (2007)


•  XCSlib version 0.34 (http://xcslib.sourceforge.net/)

–  Based on a C++ code base

–  Very flexible to modify/add new component


•  The first step: Gather the facts

•  Need to get a clear picture of the execution profile


–  Shark freely available on Mac OS X

–  Gprof on Unix systems
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XCSlib


•  Shark G4 platform profile (same behavior displayed on the AMD platform)


•  The rule matching is conducted by ternary_condition::match!

ternary_condition::match!

XCSlib 
•  The main cycle consumer 

•  Each rule loops to match

•  Good candidate for HW 

acceleration

•  If we accelerate the inner 

loop we can drop the time 
spent matching


Extending Toward Vector Instructions


Idea: Loop unroll, using vector operations to 
manipulate four integers at once (pack 64 

conditions in a single match step)


The Vector-based Matching (SSE2)
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Speedup After Vectorizing


Benefits of caching 

Hardware Acceleration On Steroids


•  NVIDIA’s Computer Unified Device Architecture (CUDA) is a 
parallel computing architecture that exploits the capacity 

within NVIDIA’s Graphic Processor Units


•  CUDA runs thousands of threads at the same time  
Single Program, Multiple Data paradigm


•  In the last few years GPUs have been extensively used in 
the evolutionary computation field 

–  Many papers and applications are available at http://

www.gpgpgpu.com


•  The use of GPGPUs in Machine Learning involves a 
greater challenge because it deals with more data but this 
also means it is potentially more parallelizable


CUDA architecture
 CUDA memories


•  Different types of memory with different access speed

–  Global memory (slow and large)

–  Shared memory (block-wise; fast but quite small)

–  Constant memory (very fast but very small)


•  The memory is limited

•  The memory copy operations involve a considerable 

amount of execution time

•  Since we are aiming to work with large scale datasets a 

good strategy to minimize the execution time is based on 
the memory usage
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CUDA in supervised learning

•  The match process is the stage 

computationally more expensive

•  However, performing only the match 

inside the GPU means downloading 
from the card a structure of size O
(NxM) (N=population size, 
M=training set size)


•  In most cases we don’t need to 
know the specific matches of a 
classifier, just how many (reduce the 
data)


•  Performing the second stage also 
inside the GPU allows the system to 
reduce the memory traffic to O(N)


CUDA fitness computation for the 
BioHEL GBML system


•  BioHEL [Bacardit, 
Burke and 
Krasnogor, 2009] 
is a GBML method 
designed for large-
scale datasets


•  We recently 
extended it with a 
CUDA-based 
fitness 
computation 
(Franco, Krasnogor 
& Bacardit, 2010)


Performance of BioHEL using CUDA


•  We used CUDA in a Tesla C1060 card with 4GB of global 
memory, and compared the run-time to that of Intel Xeon 
E5472 3.0GHz processors


•  Biggest speedups obtained in large problems (|T| or #Att), 
specially in domains with continuous attributes


•  Run time for the largest dataset reduced from 2 weeks to 
8 hours


Integration of CUDA and ILAS

•  The speedups of these two techniques can stack one on 

top of the other
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Parallelization Models


•  Coarse-grained parallelism

•  Fine-grained parallelism


Coarse-grained Parallelism


•  By coarse-grain parallelism we are talking about 
executing independently several runs


•  As there is no communication, the speedup is 
always linear 


•  In which situations can we do this?

– Evolutionary algorithms are stochastic methods, we 

need to run always our methods several times. If we 
have the parallel hardware, this is a trivial way of gaining 
efficiency


Coarse-grained Parallelism


•  There is, however, a more defined way of performing 
coarse-grain parallelism: ensemble learning


•  These techniques integrate the collective predictions of a 
set of models in some principled fashion


•  These models can be trained independently


Coarse-grained Parallelism


•  Ensemble for consensus prediction (Bacardit and 
Krasnogor, 2008) 


–  Similar technique to bagging

1.  Evolutionary data mining method is run N times on the original 

training set, each of them with a different random seed

2.  From each of the N runs, a rule set is generated

3.  Exploitation stage: For each new instance, the N models 

produce a prediction. The majority class is used as the 
ensemble prediction


–  Ensembles evaluated on 25 UCI repository datasets 
using the Gassist LCS


–  In average the ensemble accuracy was  2.6% higher


1298



Coarse-grained Parallelism


•  Ensemble for consensus prediction

–  Prediction of a difficult bioinformatics dataset


–  Accuracy increased of ~9% with 25 rule sets


More Corse-Grain


•  If evaluation is extremely costly

•  Run the same algorithm with the same seed

•  Same population everywhere

•  Each algorithm only evaluates a chunk of the population

•  The fitness estimates are broadcasted (e.g. MPI)

•  Minimal communication possible (only the fitness value)

•  All algorithms run the same genetic operators on identical 

population individuals (as all run using the same seed)


•  The NAX system (Llora, X., Priya, A., and Bhragava, 2007)  


In a Picture
 Fine-grained parallelism


•  Exploit maximum parallelism

•  Impose an spatial topology

•  Define neighborhood operators

•  GALE (Llora, 2002)

•  Easy implementable on shared-memory machines

•  Minimizes the computation/communication ratio for 

distributed memory implementations
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GALE: Topology


•  A cell contains 0 or 1 individual

•  A cell is surrounded by 8 neighbors

•  Subpopulations spatially defined by the 

adjacent cells
Empty cell  Occupied cell (1 ind) 

GALE: Merge


•  Merge


1.  Choose a neighbor


2.  Recombine the genetic material


3.  Replace the individual


mate 

GALE: Split


•  Split


1. Replicate and mutate


2. Occupy

–   Empty cell with higher 

number of neighbors"

–   Occupied cell with the worst 
neighbor (no empty cell 
available)


GALE: Survival


•  0-1 Neighbors


•  2-6 Neighbors 

•  7-8 Neighbors 

•   Isolated 

•   psr(ind) fitness proportional 

•   death  leave cell empty 

•   Spongy 

•   psr(ind) related to neighbors 

•   death  leave cell empty 

•   Crowded 

•   psr(ind) = 0 

•   death  replace by the best 
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GALE: Data Distribution
 Data-intensive Computing


•  Usually refers to:

–  Infrastructure

–  Programming techniques/paradigms


•  Google made it main stream after their MapReduce model

•  Yahoo! provides and open source implementation


–  Hadoop (MapReduce)

–  HDFS (Hadoop distributed filesystem)

–  Mahout (Machine Learning methods)


•  Engineered to store petabytes reliably on commodity 
hardware (fault tolerant)


•  Map: Equivalent to the map operation on functional 
programming


•  Reduce: The reduction phase after maps are computed 


Meandre: NCSA’s "
Data-Intensive Infrastructure


•  Extend the programming limitation of MapReduce

•  Execution Paradigms


– Conventional programs perform computational tasks by 
executing a sequence of instructions.


– Data driven execution revolves around the idea of 
applying transformation operations to a flow or stream 
of data when it is available. 


Meandre: The Dataflow Component


•  Data dictates component execution semantics


Component 

P 

Inputs Outputs 

Descriptor in RDF"
of its behavior


The component "
implementation
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Meandre: Flow (Complex Tasks)


•  A flow is a collection of connected components


Read 

P Merge 

P 

Do 

P 

Show 

P 

Get 

P 

Dataflow execution 

Your Point Being?


•  Evolutionary algorithms can be modeled using data-
intensive modeling


•  Imagine a stream of individuals being process by 
components


•  A single model implementation automatically parallelizable 
where needed


Collecting The Benefits


Real-World Examples


What does large scale mean?

Evolution as massive parallel processing

The challenges of data mining

Kaleidoscopic large scale data mining


Wrapping up"
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Real-World  Examples 


•  Example to present

–  Protein Structure & Contact Map Prediction (Bacardit et al., 2009)

–  Cancer prediction (Llora et al. 2007; Llora et al. 2009)


•  A set of LCS applications to Data Mining is collected in 
(Bull et al., 2008)


Protein Structure Prediction


•  Protein Structure Prediction (PSP) aims to predict 
the 3D structure of a protein based on its primary 
sequence


Primary  
Sequence 

3D  
Structure 

Protein Structure Prediction


•  Beside the overall 3D PSP (an optimization problem), 
several structural aspects can be predicted for each 
protein residue

–  Coordination number

–  Solvent accessibility

–  Etc.


•  These problems can be modelled in may ways:

–  Regression or classification problems

–  Low/high number of classes

–  Balanced/unbalanced classes

–  Adjustable number of attributes


•  Ideal benchmarks !!

•  http://www.infobiotic.net/PSPbenchmarks/


Contact Map Prediction


•  Two residues of a chain are said to be in contact if their distance 
is less than a certain threshold


•  Contact Map (CM): binary matrix that contains a 1 for a cell if 
the residues at the row & column are in contact, 0 otherwise


•  This matrix is very sparse, in real proteins there are less than 2% 
of contacts 


•  Highly unbalanced dataset


Contact Primary  
Sequence 

Native State 
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Contact Map Prediction


•  (Bacardit et al. 2009) participated in the CASP8 competition

•  CASP = Critical Assessment of Techniques for Protein Structure 

Prediction. Biannual competition 

•  Every day, for about three months, the organizers release some 

protein sequences for which nobody knows the structure (129 
sequences were released in CASP9, in 2010)


•  Each prediction group is given three weeks to return their predictions

•  If the machinery is not well oiled, it is not feasible to participate !!

•  For CM, prediction groups have to return a list of predicted contacts 

(they are not interested in non-contacts) and, for each predicted pair of 
contacting residues, a confidence level


•  The evaluation for CM ranks this list by the confidence, and calculates 
the accuracy of the top L/x predictions (L = length of chain, x = 
typically 10)    


Contact Map Prediction: Hands on


•  Training set of 2413 proteins selected to 
represent a broad set of sequences


–  32 million pairs of amino-acids (instances in the training 
set) with less than 2% of real contacts


–  Each instance is characterized by up to 631 attributes


•  50 samples of ~660000 examples are generated 
from the training set. Each sample contains two 
no-contact instances for each contact instance


•  The BioHEL GBML method (Bacardit et al., 
2009) was run 25 times on each sample


•  An ensemble of 1250 rule sets (50 samples x 25 
seeds) performs the contact maps predictions 
using simple consensus voting


•  Confidence is computed based on the votes 
distribution in the ensemble


Training	
  set	
  

x50	
  

x25	
  

Consensus	
  

Predic5on
s	
  

Samples	
  

Rule	
  sets	
  

Results of Contact Map prediction


•  The subset of the most difficult target (Free Modelling 
targets) of CASP9 were used to evaluate CM


•  Out predictor obtained an average accuracy of 23.6%

•  Do you think it is low?


–  It is more than 11 times higher than a random prediction

–  The predictor was the best Ab Initio method in the competition 


•  Overall, tackling this problem has forced us to address a 
broad range of bottlenecks in DM methods

–  Code bottlenecks

–  Memory footprint bottlenecks

–  Scalability bottlenecks 


Prostate Cancer Diagnosis


•  Biopsy-staining-microscopy-manual recognition is the diagnosis 

procedure for the last 150 years. 


GECCO 2007 Llorà, Reddy, Matesic & Bhargava 80 
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Advances on Fourier Transform "
IR Imaging


•  Infrared spectroscopy is a classical technique for 

measuring chemical composition of specimens.


•  At specific frequencies, the vibrational modes of 

molecules are resonant with the frequency of infrared 

light.


•  Microscope has develop to the point that resolution that 

match a pixel with a cell (and keep improving).


•  It allows to start from the same data (stained tissue)


•  Generates larges volumes of data


GECCO 2007 Llorà, Reddy, Matesic & Bhargava 81 

Advances on Fourier Transform "
IR Imaging


GECCO 2007 Llorà, Reddy, Matesic & Bhargava 82 

Spectrum Analysis


•  Microscope generate a lot of data


•  Per spot the spectra signature requires GBs of storage


•  Bhargava et al. (2005) feature extraction for tissue identification


•  More than 200 potential features per spectrum (cell/pixel)


•  Firsts methodology that allowed tissue identification
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Prostate Cancer Data 
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1. Tissue identification

–  Modeled as a supervised learning problem


–  (Features, tissue type)


–  The goal: Accurately retrieve epithelial tissue


2. Tissue diagnosis

–  Modeled as a supervised learning problem


–  (Features, diagnosis)


–  The goal: Accurately diagnose each cell (pixel) and 
aggregate those diagnosis to generate a spot (patient) 
diagnosis 


1305



GBML Identifies Tissue Types
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GBML Identifies Tissue Types


•  Accuracy >96%


•  Mistakes on minority classes (not targeted) and boundaries
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Filtered Tissue is Accurately Diagnosed
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Filtered Tissue is Accurately Diagnosed
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Filtered Tissue is Accurately Diagnosed


•  Pixel crossvalidation accuracy using NAX (87.34%)

•  Spot accuracy


–  68 of 69 malignant spots 

–  70 of 71 benign spots


•  Human-competitive computer-aided diagnosis system 
is possible (Humies 2007 Bronze award)


•  First published results that fall in the range of human 
error (<5%)


Wrapping Up


What does large scale mean?

Evolution as massive parallel processing

The challenges of data mining

Kaleidoscopic large scale data mining

Real-world examples


Wrapping  Up


•  We have shown in this tutorial how GBML methods have 
high potential for mining large-scale datasets


•  They are natural parallel processing machines

•  Recent improvements in many dimensions of the learning 

process

–  Representations

–  Learning paradigms

–  Inference mechanisms

–  Hybridization


The Game Has a New Name


•  The exception is becoming norm

– Efficient parallel designs

– Efficiency enhancement methods

– Hardware support (SSE, CUDA, etc.)


•  However, all these components cannot be used 
blindly, they have to be adjusted properly, 
accordingly to the characteristics/dimensions of 
the problem
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Better Understanding


•  Theoretical analysis of the different facets of a GBML 
system can help


•  Understand better why/when can the components 
perform well


•  Design robust policies that can take the best of the 
techniques at hand


•  Provide insight on parameterization of methods

–  If we would like the community to use GBML methods, we have to 

make them easy to use


•  Some work already exists (Butz, 2006; Franco et al., 
2011), but we still have a long road ahead of us


Do not Be Shy


•  GBML systems are highly flexible, with good 
explanatory power, and can have good scalability


•  Go and give it a shoot!
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