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ABSTRACT 

In data mining, the traditional classification algorithms tend to 
loose its predictive capacity when applied on a dataset which 
distribution between classes is imbalanced.                                                                                                                                                                                 

This work aims to present a new methodology using genetic 
algorithms, in order to create synthetic instances from the 
minority class. The experiments with the proposed methodology 
demonstrated a better classification performance in most of the 
problems, in comparison with other work in the specific literature. 

Categories and Subject Descriptors 
G.2.1 [Combinatory]: Combinatorial algorithms 
I.5.2 [Design Methodology]: Classifier design and evaluation 

General Terms 
Genetic algorithms, Nature inspired algorithms, Pattern 
recognition, Classification, Imbalanced datasets. 

Keywords 
Classification, Genetic Algorithm, Imbalanced Datasets, Data 
Mining. 

1. INTRODUCTION 
Nowadays, the machine learning classification algorithms is 
largely used to understand the amount of data generated by 
automated processes. Nevertheless, most of the traditional 
classification algorithms ignore the imbalanced distribution 
among classes in the dataset and assume that the error cost in a 
class is the same as in the other classes. 

This work presents a genetic algorithm (GA) for oversampling, 
that is, the creation of synthetic minority instances oriented by an 
evolutionary process. Basically the proposed GA aims to optimize 
the AUC measure obtained in the classification process, adjusting 
the positioning and size of regions inside the limits of the 
minority class (also known as  positive class), so those regions are 
filled with synthetic positive instances to balance the dataset. The 
experiments demonstrated that the proposed GA provides a better 
classification performance, if compared with other results 
published in the specific literature. 

2. THE IMBALANCE PROBLEM AND 
SOLUTIONS  
In data mining [1], the classification algorithms on the presence of 
imbalanced datasets, in most of the cases, tend to classify the 

minority class instance as belonging to the majority class. 
Nevertheless, normally the class with lower number of samples is  
the most interesting and valuable to be identified, and this 
behavior can bring risks, financial and personal losses, if this 
prediction is incorrect. [7]. 

The scientific community agrees that this problem needs attention 
and solution [13]. In order to systematize the problem, [8] 
catalogued six causes associated with low performance in 
imbalanced datasets, which they concluded that not always the 
rarity of positive instances is the main cause of low performance, 
and according to the experiments in [5] and [10], the low 
performance rating in the data set is associated not only with 
imbalanced distribution of classes, but also with their overlap.  

Over the past years several approaches have been adopted in the 
data mining community in order to tackle the causes of the 
problem [13][19], and to group such initiatives, [11] identified 
three main approaches: Algorithm level adjustment, cost sensitive 
learning and data level adjustment.  

3. METHODOLOGY 
This work proposes a data level adjustment that creates synthetic 
instances in the positive class, characterizing an oversampling 
strategy. 

The Genetic Algorithm for Balancing (GAB) presented in this 
work, and previously in [20], adjusts regions position within the 
positive instances P. Those regions are randomly filled with 
synthetic instances. Thus, it is executed a distribution of instances 
in the training set T, compensating the imbalance between classes. 

3.1 GA encoding 
In the GAB, each individual is represented by a chromosome 
containing r regions. The chromosome C that encodes one solution 
in the GAB is composed of nrt *  genes. For each region 

there’s a set of n genes, where n is the number of attributes in the 
training set T. Each gene represents a minimum and maximum value 
of an attribute, and the r regions are randomly filled with synthetic 

instances. The problem shown in figure 1 contains two variables (x, 
y) of continuous numeric type. Table 1 presents the chromosome 

applied to this problem with r=4 regions, each one with n=2 genes, 

composing a total length t = 8.  
 
Table 1 – Solution encoding: four regions and two attributes. 

 Region 1 Region 2 Region 3 Region 4 
Attribute X y x y x y x y 
Max 0.15 0.77 0.47 0.97 0.36 0.63 0.55 0.35 

Min 0.04 0.45 0.11 0.87 0.22 0.14 0.45 0.17 
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Figure 1 –Four regions filled with synthetic instances (x plots). 
 
For categorical attributes, the gene must be adapted to contain a 
subset of existing values for this kind of positive attribute in the 
class, considering the same cannot be represented by minimum 
and maximum, because there is no previous or subsequent value. 
For example, there is no ascending ordering in the set that 
contains the MERCOSUL countries (Brazil, Argentina, Uruguay, 
Paraguay). Thus, if we add the attribute country in the 
chromosome of table 1, the new gene would be a new column 
containing a subset of the MERCOSUL set. 
 
To avoid overfitting and region overlapping, it is not possible to 
create repeated instances given a minimum distance dm, which is 
the averaged euclidean distance between instances in the subset of 
positive instances P. 

3.2 Crossover and mutation operators 
The selection of individuals for crossover is done by roulette 
wheel [14][15][16]. To perform the crossover operator, a multiple 
crossover with two cut points randomly selected by region was 
used, generating two new individuals per operation. The simple 
mutation strategy [2] was applied, where part of the gene is 
selected to be inserted some random variety. For the mutation 
rate, the preliminary experiments did not obtain satisfactory 
results with a low rate of mutation, so, this rate was increased to 
25% [23]. 

3.3 Fitness function 
In GAB, the fitness function is the AUC [3][4][6], which is a 
known classification measure used in several benchmarks that 
represent a ROC curve as a single scalar. 

4. EXPERIMENTS AND RESULTS 
In order to prove the algorithm applicability, this section 
demonstrates and compares the GAB results in terms of AUC, 
obtained with the C4.5 algorithm [9] after balancing the datasets. 
The results are compared with the experiments published in [5], 
which is a study about imbalanced data sets that covers several 
methods for oversampling, and is considered a tough benchmark. 
The best results in [5] were obtained with SMOTE oversampling 
method [12], which also creates synthetic positive instances, 
combined with an undersampling method [21][22], which remove 
negative instances. 

To make an equivalent benchmark comparison, the experiment 
steps described in [5] were also adopted in this work. The GAB 
experiments were performed over 15 datasets from UCI machine 
learning repository [17] used in [5]. All the experiments were 
done with two class problems. For multi-classes datasets, one 
class was selected, and the remainder ones were clustered into one 
class. The oversampling percent should be enough for a 50% class 
distribution. The use of four regions in the experiments showed 
better classification performance and stability. 

The 15 datasets were balanced with GAB, and then scored with 
the C4.5 algorithm. A cross-validation with 10 folds [18] was 
performed for each execution, and the AUC average obtained as 
the measure of each folding. To evaluate the algorithm stability, 
10 independent executions were performed, and the mean and 
standard deviation (in parentheses) for AUC obtained are 
displayed in table 2. 

Table 2 – Comparison between GAB and the results published 
in [5]. 

 Batista & Monard, 2004 GAB 

Dataset Best algorithm AUC AUC 

Pima SMOTE 85.49(5,17) 82.72(0.48) 

German SMOTE+TOMEK 81.75(4.78) 76.99(0.82) 

P-Operative SMOTE+ENN 59.83(33.91) 69.68(1.69) 

Habermann SMOTE+ENN 76.38(5.51) 73.73(0.74) 

Splice-ie SMOTE 98.46(0.87) 98,84(0.20) 

Splice-ei SMOTE 98.92(0.44) 96.65(0.22) 

Vehicle SMOTE 98.96(0.98) 99.01(0.32) 

Letter-vowel SMOTE+ENN 98.94(0.22) 95.38(0.22) 

New-thyroid SMOTE+ENN 99.22(1.72) 99.81(0.23) 

E.Coli SMOTE+TOMEK 95.98(4.21) 97.19(0.24) 

Satimage SMOTE+ENN 95.67(1.18) 84.14(0.52) 

Flag SMOTE+ENN 79.32(28.83) 86.03(1.86) 

Glass SMOTE+ENN 92,90(7,30) 96.81(1.62) 

Letter-a SMOTE 99.91(0.12) 99.95(0.09) 

Nursery SMOTE+TOMEK 99.27(0.36) 99,38(0.3) 

 
As can be seen in table 2, the GAB performed better in 9 of 15 
problems, and the low values of standard deviations shows the 
robustness of the proposed algorithm.  

5. CONCLUSION 
This work presents an oversampling strategy using a genetic 
algorithm for balancing (GAB), which performs the dataset 
adjustment by the creation of synthetic positive instances targeted 
by an evolutionary process. The 15 datasets from UCI machine 
learning repository were balanced with the GAB and classified 
with the C4.5 algorithm. The results were compared with [5], and 
in most of the cases, the GAB has presented the best classification 
performance. 

In future works, we intend to use the GAB in conjunction with 
undersampling strategies and other distance metrics applied to 
nominal attributes and multiclass problems. 
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