

Tutorial: Drift Analysis

Benjamin Doerr

Max-Planck-Institut für Informatik Saarbrücken

Copyright is held by the author/owner(s). *GECCO'11*, July 12–16, 2011, Dublin, Ireland. ACM 978-1-4503-0690-4/11/07.

Bio-Sketch

- Benjamin Doerr is a senior researcher at the Max Planck Institute for Computer Science and a professor at Saarland University.
- He received his diploma (1998), PhD (2000) and habilitation (2005) in mathematics from Kiel University.
- Together with Frank Neumann and Ingo Wegener, he founded the theory track at GECCO and served as its co-chair 2007-2009.
- He is a member of the editorial boards of Evolutionary Computation and Information Processing Letters.
- His research area includes theoretical aspects of randomized search heuristics, in particular, run-time analysis and complexity theory.

Benjamin Doerr

Agenda

- Motivation and a simple drift result
- Four applications in evolutionary computation theory
 - Coupon collector
 - RLS and (1+1) EA optimize OneMax
 - RLS and (1+1) EA optimize linear functions
 - Finding mininum spanning trees
- More drift methods
- Summary, directions for future research

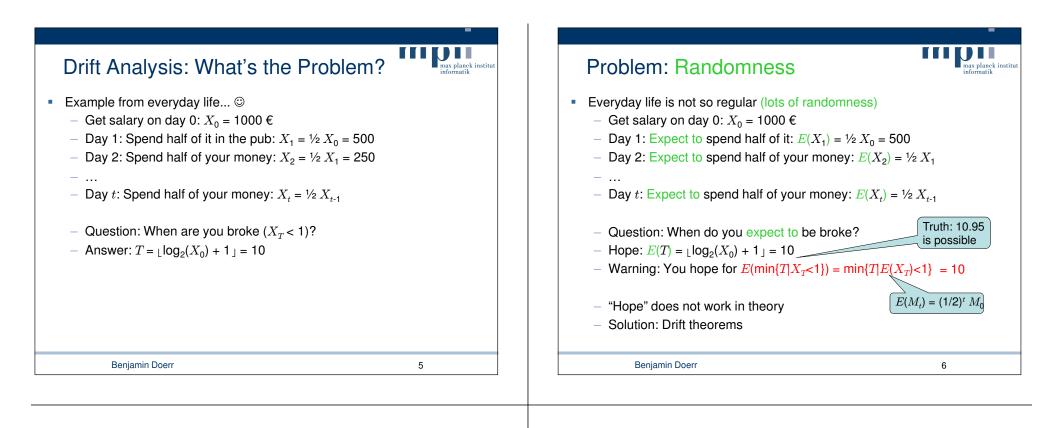
Objectives of the Tutorial

- This is a tutorial on drift analysis, which is one of the strongest methods in the theory of randomized search heuristics.
- I shall try my best to..
 - tell you on a very elementary level what drift analysis can do for you
 - use a series of examples from easy to advanced to demonstrate how to use drift analysis
 - sketch the other main methods in this area
 - give a one-slide summary of the most important facts
 - sketch a few directions for further research

3

1311

4



A Drift Theorem

Theorem. Let $X_0, X_1, ...$ be non-negative integer random variables. Assume that there is a $\delta > 0$ such that

(1)
$$\forall t \in \mathbb{N}, x \in \mathbb{N}_0 : E(X_t | X_{t-1} = x) \le (1 - \delta)x.$$

Then $T := \min\{t \in \mathbb{N}_0 | X_t = 0\}$ satisfies

$$E(T) \le (1/\delta)(\ln(X_0) + 1)$$

A Drift Theorem

Theorem. Let $X_0, X_1, ...$ be non-negative integer random variables. Assume that there is a $\delta > 0$ such that

(1) $\forall t \in \mathbb{N}, x \in \mathbb{N}_0 : E(X_t | X_{t-1} = x) \le (1 - \delta)x.$

Then $T := \min\{t \in \mathbb{N}_0 | X_t = 0\}$ satisfies

$$E(T) \leq (1/\delta)(\ln(X_0) + 1).$$

Note. (i) This is clearly not the first drift theorem ever found, but a very useful one.

(ii) This "multiplicative" drift approach was first suggested by Daniel Johannsen. It was first published in BD, Johannsen, Winzen [GECCO'10].

Benjamin Doerr

7

A Drift Theorem

Theorem. Let $X_0, X_1, ...$ be non-negative integer random variables. Assume that there is a $\delta > 0$ such that

(1)
$$\forall t \in \mathbb{N}, x \in \mathbb{N}_0 : E(X_t | X_{t-1} = x) \le (1 - \delta)x.$$

Then $T := \min\{t \in \mathbb{N}_0 | X_t = 0\}$ satisfies

$$E(T) \le (1/\delta)(\ln(X_0) + 1).$$

Note. For δ small and X_0 large, the theorem gives an approximate upper bound version of "hope":

$$\begin{split} E(\min\{t \in \mathbb{N}_0 | X_t < 1\}) &= E(T) \le (1/\delta)(\ln(X_0) + 1) \\ &\approx \lfloor \log_{1/(1-\delta)}(X_0) + 1 \rfloor = \min\{t | E(X_t) < 1\} \end{split}$$

Benjamin Doerr

An Improved Drift Theorem

Theorem (BD, L. Goldberg [PPSN'10]). Let $X_0, X_1, ...$ be random variables taking values in $\{0\} \cup [1, \infty[$. Assume that there is a $\delta > 0$ such that

(1)
$$\forall t \in \mathbb{N}, x \in \mathbb{N}_0 : E(X_t | X_{t-1} = x) \le (1 - \delta)x.$$

Then $T := \min\{t \in \mathbb{N}_0 | X_t = 0\}$ satisfies

(i) $E(T) \leq (1/\delta)(\ln(X_0) + 1);$

(ii) for all c > 0, $\Pr(T > (1/\delta)(\ln(X_0) + c) \le e^{-c}$.

Note. Adds the "tail bound" (ii) to what we had before (for free).

Agenda

- Just seen: Motivation—Why drift analysis?
 - Situation: You expect some progress every iteration
 - Drift theorems: "Things are (roughly) as you hoped for"
 - The expected time to reach your goal (roughly) is at most the time needed to collect an expected progress equal to the distance from your goal.
- Next: Four applications from evolutionary computation theory
 - a slightly improved drift theorem
 - Coupon collector
 - OneMax
 - Linear functions
 - Minimum spanning trees

Benjamin Doerr

Application 1: Coupon Collector
Coupon Collector Problem:

There are *n* different types of coupons: *T*₁, ..., *T_n*Round 0: You start with no coupon
Each round *t*, you obtain a random coupon *C_t Pr*(*C_t* = *T_k*) = 1/*n* for all *t* and *k*After how many rounds do you have all types of coupons?
Analysis: *X_t* := Number of missing coupon types after round *t*; *X₀* = *n*.

- Question: Smallest T such that $X_T = 0$.
- If $X_{t-1} = k$, then the chance to get a new coupon in round t is k/n. Drift: $E(X_t|X_{t-1}=k) = (k/n)(k-1) + (1-k/n)k = (1-1/n)k$.

- Drift-Thm gives: • $E(T) \le (1/\delta)(\ln(x_0) + 1) = n (\ln(n) + 1)$ • For all $\beta > 0$, $Pr(T > (\beta + 1) n \ln(n)) < n^{\beta}$

12

1313

9

except: the "+1" could be made a

+0.577... + o(1)

Application 2: RLS optimizes OneMax

One of the most simple randomized search heuristics (RSH): Randomized Local Search (RLS), here used to maximize $f: \{0,1\}^n \rightarrow \mathbb{R}$

- RLS:1. Pick $x \in \{0,1\}^n$ uniformly at random% random start-point2. Pick $i \in \{1, ..., n\}$ uniformly at random3. $y := x; y_i := 1 x_i$ % mutation: flip a random bit4. if $f(y) \ge f(x)$, then x := y% selection: keep the fitter5. if not happy, go to 2.% repeat or terminate
- Question: How long does it take to find the maximum of a simple function like OneMax = $f: \{0,1\}^n \rightarrow R; x \mapsto x_1 + x_2 + ... + x_n$ (number of 'ones' in x)
- Remark: Of course, x = (1, 1, ..., 1) is the maximum, and no-one needs an algorithm to find this out.
 Aim: Start understanding RSH via simple examples

Benjamin Doerr

14

Application 2: RLS optimizes OneMax

- RLS: 1. Pick $x \in \{0,1\}^n$ uniformly at random % random start-point 2. Pick $i \in \{1, ..., n\}$ uniformly at random 3. $y := x; y_i := 1 x_i$ % mutation: flip a random bit 4. if $f(y) \ge f(x)$, then x := y % selection: keep the fitter 5. if not happy, go to 2. % repeat or terminate
- Question: How long does it take to find the maximum of a simple function like OneMax = f: {0,1}ⁿ → R; x → x₁ + x₂ + ... + x_n (number of 'ones' in x)
- Analysis:
 - − X_t : Number of zero-bits after iteration t (= " $f_{opt} f(x)$ "). Trivially, $X_0 \le n$
 - If $X_{t-1} = k$, then with probability k/n, we flip a 'zero' into a 'one', giving $X_t = k 1$. Otherwise, y is worse than x and thus $X_t = k$
 - As before: $E(X_t|X_{t-1}=k) = (k/n)(k-1) + (1-k/n)k = (1-1/n)k$ "drift!"
 - Drift Thm gives: Maximum found after $n(\ln(n) + 1)$ iterations (in expect.)

Benjamin Doerr Bottom line: "f-distance to optimum" often good drift measure

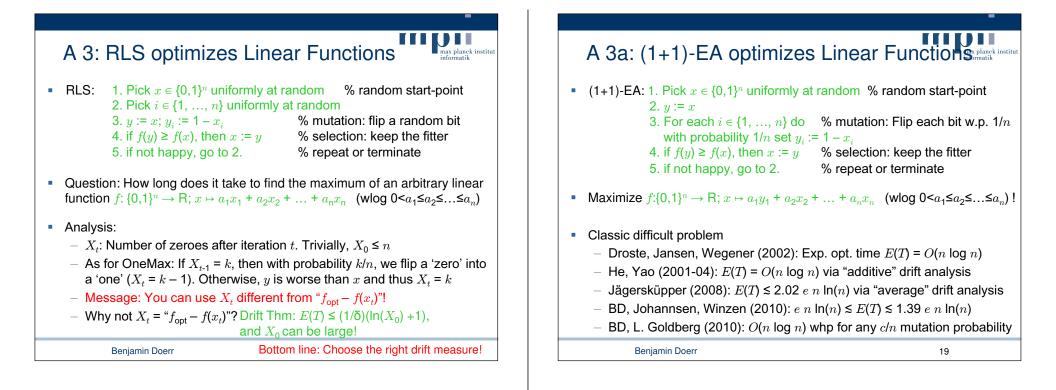
Application 2a: (1+1)-EA optimizes OneMaxik

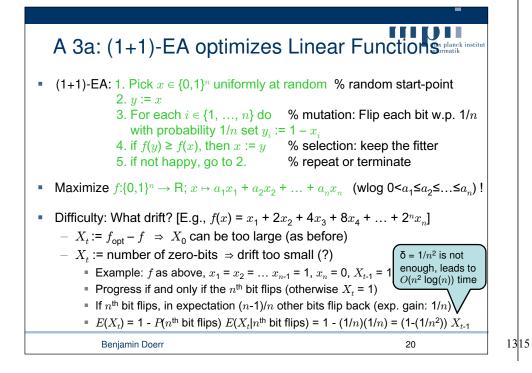
- One of the most simple evolutionary algorithms (EAs): (1+1)-EA, again used to maximize *f*: {0,1}ⁿ → R
 - (1+1)-EA: 1. Pick $x \in \{0,1\}^n$ uniformly at random % random start-point 2. y := x
 - 3. For each $i \in \{1, ..., n\}$ do % mutation: Flip each bit w.p. 1/n
 - with probability $1/n \text{ set } y_i := 1 \mathbf{x}_i$
 - 4. if $f(y) \ge f(x)$, then x := y % selection: keep the fitter
 - 5. if not happy, go to 2. % repeat or terminate
- '(1+1)': population size = 1, generate 1 off-spring, perform 'plus'-selection: choose new population from parents and off-springs
- Cannot get stuck in local optima ("always converges").
- Question: Time to maximize OneMax = $f: \{0,1\}^n \rightarrow \mathsf{R}; x \mapsto x_1 + \ldots + x_n$?

Application 2a: (1+1)-EA optimizes OneMaxii

- (1+1)-EA: 1. Pick $x \in \{0,1\}^n$ uniformly at random % random start-point 2. y := x
 - 3. For each $i \in \{1, ..., n\}$ do % mutation: Flip each bit w.p. 1/n with probability 1/n set $y_i := 1 x_i$
 - 4. if $f(y) \ge f(x)$, then x := y5. if not happy, go to 2.
 - % selection: keep the fitter
 - % repeat or terminate
- Question: Time to maximize OneMax = $f: \{0,1\}^n \rightarrow \mathbb{R}; x \mapsto x_1 + \dots + x_n$?
- Analysis:
 - $-X_t$: Number of zeroes after iteration t ("f-distance")
 - − If $X_{t-1} = k$, then the probability that exactly one of the missing bits is flipped, is $k (1/n) (1 1/n)^{n-1} \ge (1/e) (k/n)$. Otherwise, $X_t \le k$
 - Hence, $E(X_t|X_{t-1}=k) \le (k-1)(k/en) + k(1-k/en) = k (1-1/en)$
 - Drift Thm: Expected optimization time at most en(ln(n) + 1)

16

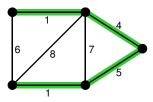




A 3a: (1+1)-EA optimizes Linear Function • (1+1)-EA: 1. Pick $x \in \{0,1\}^n$ uniformly at random % random start-point 2. y := x3. For each $i \in \{1, ..., n\}$ do % mutation: Flip each bit w.p. 1/nwith probability $1/n \operatorname{set} y_i := 1 - x_i$ 4. if $f(y) \ge f(x)$, then x := y % selection: keep the fitter 5. if not happy, go to 2. % repeat or terminate • Maximize $f:\{0,1\}^n \to \mathbb{R}; x \mapsto a_1x_1 + a_2x_2 + \dots + a_nx_n \quad (\text{wlog } 0 < a_1 \le a_2 \le \dots \le a_n) !$ Solution (sketched, using ideas from [DJW02], [HY02], [DJW10]): $-X_t: x_1 + ... + x_{1,n/2} + (5/4) x_{1,n/2+1} + ... + (5/4) x_n$ for the x after iteration t - Compute: If $X_{t-1} = k$, then $E(X_t) \le (1 - 0.01/n) k$. [less than 1 page] - Drift Thm: Optimization time is $O(n \log n)$ with high probability. - Note: (i) These X_t work for all linear functions \odot (ii) Alternative: "Average drift" argument Jägersküpper [PPSN'08] Bottom line: Choose a clever drift measure! Benjamin Doerr

Application 4: (1+1)-EA optimizes MST

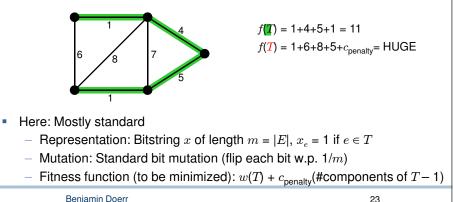
- Minimum Spanning Tree (MST) problem:
 - Input: Undirected connected graph G = (V, E), edge weights (w_e) in N
 - Task: Compute a connected spanning subgraph T = (V, E') of G with minimal weight $w(T) = \sum_{e \in E'} w_e$



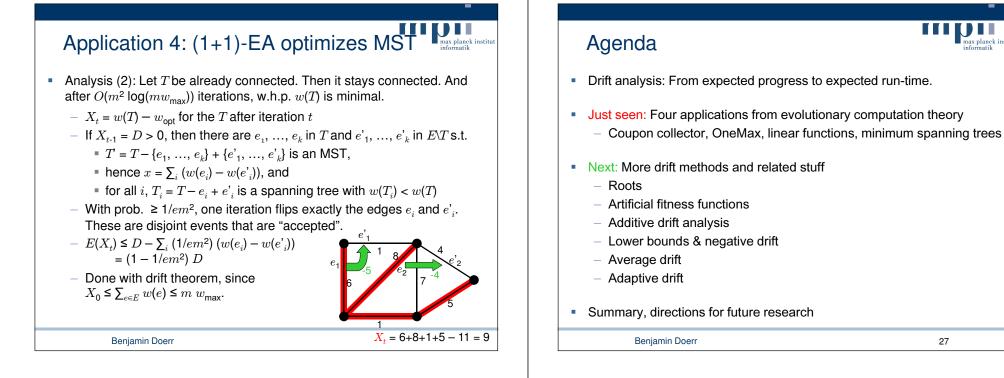
- RSH for combinatorial optimization problems new aspects
 - How to represent the solutions? E.g. bit-strings, permutations, ...
 - What is a good mutation operator for this representation?
 - Possibly: Use a clever fitness function *f*.

Benjamin Doerr

- Minimum Spanning Tree (MST) problem:
 - Input: Undirected connected graph G = (V, E), edge weights (w_e) in **N**
 - Task: Compute a connected spanning subgraph T = (V, E') of G with minimal weight $w(T) = \sum_{e \in E'} w_e$



Application 4: (1+1)-EA optimizes MST Application 4: (1+1)-EA optimizes MST • (1+1)-EA: 1. Pick $x \in \{0,1\}^m$ uniformly at random % random start-point • (1+1)-EA: 1. Pick $x \in \{0,1\}^m$ uniformly at random % random start-point 2. y := x2. y := x3. For each $i \in \{1, ..., m\}$ do % mutation: Flip each bit w.p. 1/m3. For each $i \in \{1, ..., m\}$ do % mutation: Flip each bit w.p. 1/mwith probability $1/m \sec y_i := 1 - x_i$ with probability $1/m \sec y_i := 1 - x_i$ 4. if $f(y) \ge f(x)$, then x := y % $f(x) = w(T) + c_{\text{penalty}}$ (#comp-1) 4. if $f(y) \ge f(x)$, then x := y % $f(x) = w(T) + c_{penalty}$ (#comp-1) 5. if not happy, go to 2. % repeat or terminate 5. if not happy, go to 2. % repeat or terminate Analysis (1): After O(m log m) iterations, Theorem [Neumann, Wegener (2004)]: The expected optimization time of the *T* is connected w.h.p.: (1+1) EA searching for an MST is $-X_{\star} = \#comp - 1$ after iteration t $O(m^2 \log(mw_{max}))$ - If $X_{t-1} = k > 0$, then there are at least k edges that Proof: Expected weight decrease method are all not in T $X_t=2$ adding each one decreases X_t Next: Drift theorem (plus many arguments of [NW04]) yields same bound, $-E(X_t) = (1 - 1/em) k$ as before. Done with Drift Thm, since $X_0 \le m$. plus tail bounds, with simpler proof 1316 Benjamin Doerr 24 Benjamin Doerr 25



The Roots, Artificial Fitness Functions

- While natural, drift analysis ("expected progress ⇒ expected run-time")
 builds on substantial maths developed, e.g., by Wald (1944), Doob (1956),
 Tweedie (1976), Hajek (1982) and many others. See, e.g.,
 - Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Surveys in Combinatorics 1999, University Press (1999) 101-136
- "Artificial fitness functions"
 - Analyze the progress of an EA by looking at the progress with respect to a potential function different from the fitness
 - First done without drift analysis in by Droste&Jansen&Wegener (2002)
 - Works often well with drift arguments ("choose a drift measure different from the fitness")

Additive Drift

- He&Yao (2001-04): First explicit use of drift analysis in EA theory.
 - Used to give a simpler and more insightful proof of the $O(n \log n)$ runtime of the (1+1) EA optimizing linear functions.
- Additive Drift: Transform an additive expected progress into a run-time
 - Start with 1000 Euros, spend at least 10 Euros each night on beer, and you're broke after at most 100 nights.
 - Start with 1000 Euros, spend in expectation at least10 Euros each night (until you're broke). When do you expect this to happen?
 - Yipiieh, the hoped for at most 100 nights are true due to complicated maths

28

Additive Drift: Details

Theorem (Hajek 1982, He&Yao 2001). Let X_0, X_1, \ldots be random variables describing a Markov process over a finite state space $S \subseteq \mathbb{R}$. Let T be the random variable that denotes the earliest point in time $t \in \mathbb{N}_0$ such that $X_t \leq 0$. If there exist $\delta > 0$ and c > 0 such that

(i) $E(X_t - X_{t+1} | X_t) \ge \delta$ for all t < T,

(ii) $X_0 \le c$.

Then $E(T) \leq \frac{c}{\delta}$.

Benjamin Doerr

30

Lower Bounds (sketch)

- Additive drift theorem also works for lower bounds:
 - "Start with 1000 Euros. If you expect to spend at most 10 Euros a night, then the expected time you're broke is in at least 100 nights"
 - Details: Exchange "≤" and "≥" in (i), (ii) and the conclusion of the additive drift theorem.
- Negative (additive) drift (He&Yao, Giel&Lehre, Happ&Johannsen&Klein &Neumann, Oliveto&Witt)
 - "Start with 1000 Euros. If you expect to earn 10 Euros a night, how unlikely is it that you're broke within the next 100 years?"
 - Needs some extra assumptions that "big losses are very unlikely"
- Currently no such results for multiplicative drift

Additive vs. Multiplicative Drift

- Additive drift is strongest when you expect a steady (uniform) progress
 - "spend 10 Euros each night"
 - (1+1) EA optimizes LeadingOnes, single-source shortest paths
- Multiplicative drift is strongest when the progress is proportional to the distance from the optimum
 - "spend half your money each night"
 - natural: progress is easier when further away from optimum
 - (1+1) EA optimizes OneMax, MST, Eulerian cycles, ...
- The expected-time bound in the multiplicative setting can be derived from the additive drift theorem
- Tail bounds do not hold in the additive setting

Benjamin Doerr

Point-wise vs. Average Drift (sketch)

- In the language of EA: Let x₀, x₁, x₂... be a sequence of search points computed by some RSH. Let g be a potential function.
- All drift theorems shown above...
 - only need something like that at all times *t*, the random search points *x_t* and *x_{t+1}* satisfy *E*(*g*(*x_t*) − *g*(*x_{t+1}*) | *g*(*x_t*) > 0) ≥ δ
 - but have only been applied using the stronger assumption of "point-wise drift":

• for all search points x, $E(g(x_t) - g(x_{t+1}) | x_t = x) \ge \delta$

- Advantage: If you can show point-wise drift, you don't have to care about the distribution of the random search point x_t
- Problem: You need to show good drift for every search point, even those occurring rarely

32

1318

Point-wise vs. Average Drift (2)

- The first to use less than point-wise drift was Jägersküpper (PPSN'08).
- Technical result: You can take the number of wrong bits as drift measure in the linear functions problem!
 - Let $x_0, x_1, x_2,...$ be the sequence of search points stored by the (1+1) EA optimizing a linear function after each iteration. Let g = OneMax.
 - Then $E(g(x_t) g(x_{t+1}) | g(x_t)) \ge c/n, c$ some explicit constant.
- Advantages:
 - More natural proof
 - First reasonable constant for the total run-time:
 - 2.02 *e n* ln(*n*) (1+*o*(1))
 - constant improved to 1.39 by DJW10 using J's drift estimate together with multiplicative drift

Benjamin Doerr

Adaptive Drift

- Problem: If the mutation rate p is higher than 7/n, then there are not drift measures that work for all linear functions [DJW10]
 - Consequence: Not clear if the run-time is still $O(n \log n)$
- Solution: For each mutation rate p and each linear function f take a custom-tailored drift measure [DG10]
 - Result: The (1+1) EA with mutation rate p = c/n, *c* any constant, finds the optimum of any linear function in time $O(n \log n)$.
 - Warning: Custom-tailors are not cheap...
 - Bonus result: Same approach shows that the classic (1+1) EA with p = 1/n finds the optimum of BinaryValue in time $e n \ln(n)$ (1±o(1))
 - the same time as for OneMax ©

Benjamin Doerr

35

Summary

- Drift analysis: Show an expected progress and gain an expected run-time!
- Several drift theorems:
 - additive: good when uniform progress
 - also yields lower bounds
 - multiplicative: good when progress proportional to distance from goal
 also tail bounds: "with probability at least 1-exp(-...)..."
- Crucial: How to measure "progress"?
 - simple & good: fitness
 - using structural properties, e.g., "number of wrong bits"
 - clever, e.g., important half of bits counts 5/4, others only 1.
 - average drift: avoid problems with rare exceptions
 - adaptive: custom-tailored measure for each instance

Open Problems (1)
Tight bounds for combinatorial problems
Minimum spanning tree

Using fitness as progress measure, above I showed that the (1+1) EA finds an MST in time O(m² log(mw_{max}))
Does a better measure show O(m² log(m)), which is the current best lower bound?

Same question for the single-criterion formulation of the single-source shortest path problem

With fitness as progress measure: O(n³ log(nw_{max})
Best known lower bound O(n³ log(n))

Benjamin Doerr

36

1319

34

Benjamin Doerr

Open Problems (2)

- Drift techniques:
 - Multiplicative drift & lower bounds
 - Not true: $E(X_{t+1}|X_t) \ge (1-\delta) X_t \Rightarrow E(T) \ge (1/\delta) (\ln(2\delta))$
 - Something like this should be true if the X_t behave to be close to their expectation
 - Additive drift & tail bounds
 - Additive drift allows bounds on expected hitting til tail bounds ("with high probability...")
 - Tail bounds should hold if the X_t behave nicely
 - Note: In all non-artificial problems, progress behaves

Tha

max planck institut informatik	References	max planck institut
	 Benjamin Doerr and Leslie Goldberg. Adaptive drift analysis. In Proceedings of Para XI), LNCS 6238, pages 32-41. Springer, 2010. 	
	 Benjamin Doerr and Leslie A. Goldberg. Drift analysis with tail bounds. In Proceedin Nature (PPSN XI), LNCS 6238, pages 174-183. Springer, 2010. 	gs of Parallel Problem Solving from
	 Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evo Computer Science, 276(1-2):51-81, 2002. 	olutionary algorithm. Theoretical
	 Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Drift analysis and linear fun Congress on Evolutionary Computation (CEC 2010), pages 1967-1974. IEEE, 2010. 	
(X_0) +1)	 Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Evolutionary Computation Conference (GECCO 2010), pages 1449-1456. ACM, 201 	
ve nicely, i.e., tend	 Oliver Giel and Per Kristian Lehre. On the effect of populations in evolutionary multi- Genetic and Evolutionary Computation Conference (GECCO 2006), pages 651-658. 	
	 Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with a Probability, 14(3):502-525, 1982. 	applications. Advances in Applied
	 Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analy optimizing linear functions. In Proceedings of Genetic and Evolutionary Computation 960. ACM, 2008. 	
times, but no good	 Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algo 85, 2001. 	rithms. Artificial Intelligence, 127(1):57-
	 Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing, 3(1):21-35, 2004. 	
	 Jens Jägersküpper. A blend of Markov-chain and drift analysis. In Proceedings of Pa (PPSN X), LNCS 5199, pages 41-51. Springer, 2008. 	arallel Problem Solving from Nature
 Frank Neumann and Ingo Wegener. Randomized local search, ev problem. Theoretical Computer Science, 378(1):32-40, 2007. 		ms, and the minimum spanning tree
anks a lot!	 Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds Algorithmica, 2011. In press. 	in evolutionary computation.
38	Benjamin Doerr	39