
Benjamin Doerr 

Tutorial: Drift Analysis

Benjamin Doerr 
Max-Planck-Institut für Informatik 

Saarbrücken

Copyright is held by the author/owner(s).

GECCO’11, July 12–16, 2011, Dublin, Ireland.

ACM  978-1-4503-0690-4/11/07.

Bio-Sketch

� Benjamin Doerr is a senior researcher at the Max Planck Institute for 
Computer Science and a professor at Saarland University. 

� He received his diploma (1998), PhD (2000) and habilitation (2005) in 
mathematics from Kiel University. 

� Together with Frank Neumann and Ingo Wegener, he founded the theory � Together with Frank Neumann and Ingo Wegener, he founded the theory 
track at GECCO and served as its co-chair 2007-2009. 

� He is a member of the editorial boards of Evolutionary Computation and 
Information Processing Letters. 

� His research area includes theoretical aspects of randomized search 
heuristics, in particular, run-time analysis and complexity theory.

2Benjamin Doerr

Agenda

� Motivation and a simple drift result

� Four applications in evolutionary computation theory

– Coupon collector

– RLS and (1+1) EA optimize OneMax

– RLS and (1+1) EA optimize linear functions– RLS and (1+1) EA optimize linear functions

– Finding mininum spanning trees

� More drift methods

� Summary, directions for future research

3Benjamin Doerr

Objectives of the Tutorial

� This is a tutorial on drift analysis, which is one of the strongest methods in 
the theory of randomized search heuristics.

� I shall try my best to..

– tell you on a very elementary level what drift analysis can do for you

– use a series of examples from easy to advanced to demonstrate how to 
use drift analysisuse drift analysis

– sketch the other main methods in this area

– give a one-slide summary of the most important facts

– sketch a few directions for further research

4Benjamin Doerr1311



Drift Analysis: What’s the Problem?

� Example from everyday life... ☺

– Get salary on day 0: X0 = 1000 €

– Day 1: Spend half of it in the pub: X1 = ½ X0 = 500

– Day 2: Spend half of your money: X2 = ½ X1 = 250

– …

– Day t: Spend half of your money: Xt = ½ Xt-1– Day t: Spend half of your money: Xt = ½ Xt-1

– Question: When are you broke (XT < 1)?

– Answer: T = ⌊log2(X0) + 1⌋ = 10

5Benjamin Doerr

Problem: Randomness

� Everyday life is not so regular (lots of randomness)

– Get salary on day 0: X0 = 1000 €

– Day 1: Expect to spend half of it: E(X1) = ½ X0 = 500

– Day 2: Expect to spend half of your money: E(X2) = ½ X1

– …

– Day t: Expect to spend half of your money: E(Xt) = ½ Xt-1– Day t: Expect to spend half of your money: E(Xt) = ½ Xt-1

– Question: When do you expect to be broke?

– Hope: E(T) = ⌊log2(X0) + 1⌋ = 10

– Warning: You hope for E(min{T|XT<1}) = min{T|E(XT)<1}

– “Hope” does not work in theory

– Solution: Drift theorems  

E(Mt) = (1/2)tM0

Truth: 10.95

is possible

= 10

6Benjamin Doerr

A Drift Theorem

7Benjamin Doerr

A Drift Theorem

8Benjamin Doerr1312



A Drift Theorem

9Benjamin Doerr

Agenda

� Just seen: Motivation—Why drift analysis?
– Situation: You expect some progress every iteration
– Drift theorems: “Things are (roughly) as you hoped for” 

� The expected time to reach your goal (roughly) is at most the time 
needed to collect an expected progress equal to the distance from 
your goal.

� Next: Four applications from evolutionary computation theory
– a slightly improved drift theorem
– Coupon collector
– OneMax
– Linear functions
– Minimum spanning trees 

11Benjamin Doerr

An Improved Drift Theorem

12Benjamin Doerr

Application 1: Coupon Collector

� Coupon Collector Problem:

– There are n different types of coupons: T1, …, Tn

– Round 0: You start with no coupon

– Each round t, you obtain a random coupon Ct
� Pr(Ct = Tk) = 1/n for all t and k

– After how many rounds do you have all types of coupons?– After how many rounds do you have all types of coupons?

� Analysis:

– Xt := Number of missing coupon types after round t; X0 = n. 

– Question: Smallest T such that XT = 0. 

– If Xt-1 = k, then the chance to get a new coupon in round t is k/n. 
Drift: E(Xt|Xt-1=k) = (k/n)(k-1) + (1-k/n)k = (1 – 1/n)k.              [δ = 1/n]

– Drift-Thm gives: • E(T) ≤ (1/δ)(ln(x0) + 1) = n (ln(n)+1)
• For all β>0,  Pr(T > (β+1) n ln(n)) < n-β

Matches the best 
known bounds, 
except: the “+1” 
could be made a 
“+0.577... + o(1)”

13Benjamin Doerr1313



Application 2: RLS optimizes OneMax

� One of the most simple randomized search heuristics (RSH):
Randomized Local Search (RLS), here used to maximize f: {0,1}n→ R

RLS: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. Pick i ∈ {1, …, n} uniformly at random
3. y := x; yi := 1 – xi % mutation: flip a random bit
4. if f(y) ≥ f(x), then x := y % selection: keep the fitter

� Question: How long does it take to find the maximum of a simple function 
like OneMax = f: {0,1}n→ R; x ↦ x1 + x2 + … + xn (number of ‘ones’ in x)

� Remark: Of course, x = (1, 1, …, 1) is the maximum, and no-one needs an 
algorithm to find this out. 
Aim: Start understanding RSH via simple examples

4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

14Benjamin Doerr

Application 2: RLS optimizes OneMax

� x

� Question: How long does it take to find the maximum of a simple function 

RLS: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. Pick i ∈ {1, …, n} uniformly at random
3. y := x; yi := 1 – xi % mutation: flip a random bit
4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

� Question: How long does it take to find the maximum of a simple function 
like OneMax = f: {0,1}n→ R; x ↦ x1 + x2 + … + xn (number of ‘ones’ in x)

� Analysis:
– Xt: Number of zero-bits after iteration t (= “fopt – f(x)”). Trivially, X0 ≤ n
– If Xt-1 = k, then with probability k/n, we flip a ‘zero’ into a ‘one’, giving
Xt = k – 1. Otherwise, y is worse than x and thus Xt = k

– As before: E(Xt|Xt-1=k) = (k/n)(k-1) + (1-k/n)k = (1 – 1/n) k “drift!”
– Drift Thm gives: Maximum found after n (ln(n) +1) iterations (in expect.)

Bottom line: “f-distance to optimum” often good drift measureBenjamin Doerr

Application 2a: (1+1)-EA optimizes OneMax

� One of the most simple evolutionary algorithms (EAs):
(1+1)-EA, again used to maximize f: {0,1}n→ R

(1+1)-EA: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, n} do % mutation: Flip each bit w.p. 1/n

with probability 1/n set yi := 1 – xi

� ‘(1+1)’: population size = 1, generate 1 off-spring, perform ‘plus’-selection: 
choose new population from parents and off-springs

� Cannot get stuck in local optima (“always converges”). 

� Question: Time to maximize OneMax = f: {0,1}n→ R; x ↦ x1 + … + xn?

with probability 1/n set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

16Benjamin Doerr

Application 2a: (1+1)-EA optimizes OneMax

� X(1+1)-EA: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, n} do % mutation: Flip each bit w.p. 1/n

with probability 1/n set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

� Question: Time to maximize OneMax = f: {0,1}n→ R; x ↦ x1 + … + xn?

� Analysis:
– Xt: Number of zeroes after iteration t (“f-distance”)
– If Xt-1 = k, then the probability that exactly one of the missing bits is 

flipped, is k (1/n) (1 – 1/n)n-1 ≥ (1/e) (k/n). Otherwise, Xt ≤ k
– Hence, E(Xt|Xt-1=k) ≤ (k – 1)(k/en) + k(1 – k/en) = k (1 – 1/en) 
– Drift Thm: Expected optimization time at most en(ln(n) + 1)

Bottom line: A weak bound on the drift may sufficeBenjamin Doerr1314



A 3: RLS optimizes Linear Functions

� x

� Question: How long does it take to find the maximum of an arbitrary linear 

RLS: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. Pick i ∈ {1, …, n} uniformly at random
3. y := x; yi := 1 – xi % mutation: flip a random bit
4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

� Question: How long does it take to find the maximum of an arbitrary linear 
function f: {0,1}n→ R; x ↦ a1x1 + a2x2 + … + anxn (wlog 0<a1≤a2≤…≤an)

� Analysis:
– Xt: Number of zeroes after iteration t. Trivially, X0 ≤ n
– As for OneMax: If Xt-1 = k, then with probability k/n, we flip a ‘zero’ into 

a ‘one’ (Xt = k – 1). Otherwise, y is worse than x and thus Xt = k
– Message: You can use Xt different from “fopt – f(xt)”!
– Why not Xt = “fopt – f(xt)”? Drift Thm: E(T) ≤ (1/δ)(ln(X0) +1), 

and X0 can be large! 

Bottom line: Choose the right drift measure!Benjamin Doerr

A 3a: (1+1)-EA optimizes Linear Functions

� x(1+1)-EA: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, n} do % mutation: Flip each bit w.p. 1/n

with probability 1/n set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

� Maximize f:{0,1}n→ R; x ↦ a1y1 + a2x2 + … + anxn (wlog 0<a1≤a2≤…≤an) !

� Classic difficult problem
– Droste, Jansen, Wegener (2002): Exp. opt. time E(T) = O(n log n)
– He, Yao (2001-04): E(T) = O(n log n) via “additive” drift analysis
– Jägersküpper (2008): E(T) ≲ 2.02 e n ln(n) via “average” drift analysis
– BD, Johannsen, Winzen (2010): e n ln(n) ≲ E(T) ≲ 1.39 e n ln(n)
– BD, L. Goldberg (2010): O(n log n) whp for any c/n mutation probability

19Benjamin Doerr

A 3a: (1+1)-EA optimizes Linear Functions

� x

� Maximize :{0,1} → R; ↦ + + … + (wlog 0< ≤ ≤…≤ ) !

(1+1)-EA: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, n} do % mutation: Flip each bit w.p. 1/n

with probability 1/n set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

� Maximize f:{0,1}n→ R; x ↦ a1x1 + a2x2 + … + anxn (wlog 0<a1≤a2≤…≤an) !
� Difficulty: What drift? [E.g., f(x) = x1 + 2x2 + 4x3 + 8x4 + … + 2nxn]

– Xt := fopt – f ⇒  X0 can be too large (as before)
– Xt := number of zero-bits  ⇒ drift too small (?)

� Example: f as above, x1 = x2 = … xn-1 = 1, xn = 0, Xt-1 = 1
� Progress if and only if the nth bit flips (otherwise Xt = 1)
� If nth bit flips, in expectation (n-1)/n other bits flip back (exp. gain: 1/n)
� E(Xt) = 1 - P(nth bit flips) E(Xt|nth bit flips) = 1 - (1/n)(1/n) = (1-(1/n2)) Xt-1

δ = 1/n2 is not 

enough, leads to 
O(n2 log(n)) time

20Benjamin Doerr

A 3a: (1+1)-EA optimizes Linear Functions

� x(1+1)-EA: 1. Pick x ∈ {0,1}n uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, n} do % mutation: Flip each bit w.p. 1/n

with probability 1/n set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % selection: keep the fitter
5. if not happy, go to 2. % repeat or terminate

� Maximize f:{0,1}n→ R; x ↦ a1x1 + a2x2 + … + anxn (wlog 0<a1≤a2≤…≤an) !

� Solution (sketched, using ideas from [DJW02], [HY02], [DJW10]):
– Xt: x1 + … + x⌊n/2⌋ + (5/4) x⌊n/2+1⌋ + … + (5/4) xn for the x after iteration t
– Compute: If Xt-1 = k, then E(Xt) ≤ (1 – 0.01/n) k. [less than 1 page]
– Drift Thm: Optimization time is O(n log n) with high probability.
– Note: (i) These Xt work for all linear functions ☺

(ii) Alternative: “Average drift” argument Jägersküpper [PPSN’08]
Bottom line: Choose a clever drift measure!Benjamin Doerr1315



Application 4: (1+1)-EA optimizes MST

� Minimum Spanning Tree (MST) problem:

– Input: Undirected connected graph G = (V, E), edge weights (we) in NNNN

– Task: Compute a connected spanning subgraph T = (V,E’) of G with 
minimal weight w(T) = ∑e∈E’ we

1
4

� RSH for combinatorial optimization problems – new aspects

– How to represent the solutions? E.g. bit-strings, permutations, …

– What is a good mutation operator for this representation?

– Possibly: Use a clever fitness function f.

1

6 7

4

5

8

22Benjamin Doerr

� Minimum Spanning Tree (MST) problem:

– Input: Undirected connected graph G = (V, E), edge weights (we) in NNNN

– Task: Compute a connected spanning subgraph T = (V,E’) of G with 
minimal weight w(T) = ∑e∈E’ we

Application 4: (1+1)-EA optimizes MST

1
4 f(T) = 1+4+5+1 = 11

� Here: Mostly standard

– Representation: Bitstring x of length m = |E|, xe = 1 if e ∈ T
– Mutation: Standard bit mutation (flip each bit w.p. 1/m)

– Fitness function (to be minimized): w(T) + cpenalty(#components of T – 1)

1

6 7

4

5

8
f(T) = 1+6+8+5+cpenalty= HUGE

23Benjamin Doerr

� x

Application 4: (1+1)-EA optimizes MST

(1+1)-EA: 1. Pick x ∈ {0,1}m uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, m} do % mutation: Flip each bit w.p. 1/m

with probability 1/m set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % f(x) = w(T) + cpenalty(#comp-1)
5. if not happy, go to 2. % repeat or terminate

� Theorem [Neumann, Wegener (2004)]:
The expected optimization time of the 
(1+1) EA searching for an MST is
O(m2 log(mwmax))

� Proof: Expected weight decrease method

� Next: Drift theorem (plus many arguments of [NW04]) yields same bound, 
plus tail bounds, with simpler proof

1

1

6 7

4

5

8

24Benjamin Doerr

� x

Application 4: (1+1)-EA optimizes MST

(1+1)-EA: 1. Pick x ∈ {0,1}m uniformly at random % random start-point
2. y := x
3. For each i ∈ {1, …, m} do % mutation: Flip each bit w.p. 1/m

with probability 1/m set yi := 1 – xi4. if f(y) ≥ f(x), then x := y % f(x) = w(T) + cpenalty(#comp-1)
5. if not happy, go to 2. % repeat or terminate

� Analysis (1): After O(m log m) iterations, 
T is connected w.h.p.:

– Xt = #comp – 1 after iteration t

– If Xt-1 = k > 0, then there are at least 
k edges that 

� are all not in T

� adding each one decreases Xt

– E(Xt) = (1 – 1/em) k as before. Done with Drift Thm, since X0 ≤ m.

1

1

6 7

4

5

8

Xt=2

25Benjamin Doerr1316



� Analysis (2): Let T be already connected. Then it stays connected. And 
after O(m2 log(mwmax)) iterations, w.h.p. w(T) is minimal. 

– Xt = w(T) – wopt for the T after iteration t

– If Xt-1 = D > 0, then there are e, …, ek in T and e’1, …, e’k in E\T s.t. 

� T’ = T – {e1, …, ek} + {e’1, …, e’k} is an MST,

� hence x = ∑i (w(ei) – w(e’i)), and

Application 4: (1+1)-EA optimizes MST

� hence x = ∑i (w(ei) – w(e’i)), and

� for all i, Ti = T – ei + e’i is a spanning tree with w(Ti) < w(T)

– With prob.  ≥ 1/em2, one iteration flips exactly the edges ei and e’i. 

These are disjoint events that are “accepted”.

– E(Xt) ≤ D – ∑i (1/em2) (w(ei) – w(e’i))
= (1 – 1/em2) D

– Done with drift theorem, since
X0 ≤ ∑e∈E w(e) ≤ m wmax.

1

1

6 7

4

5

8
e1 e2

e’2

e’1

Xt = 6+8+1+5 – 11 = 9

-5 -4

Benjamin Doerr

Agenda

� Drift analysis: From expected progress to expected run-time.

� Just seen: Four applications from evolutionary computation theory
– Coupon collector, OneMax, linear functions, minimum spanning trees 

� Next: More drift methods and related stuff
Roots– Roots

– Artificial fitness functions
– Additive drift analysis
– Lower bounds & negative drift
– Average drift
– Adaptive drift

� Summary, directions for future research
27Benjamin Doerr

The Roots, Artificial Fitness Functions

� While natural, drift analysis (“expected progress ⇒ expected run-time”) 
builds on substantial maths developed, e.g., by Wald (1944), Doob (1956), 
Tweedie (1976), Hajek (1982) and many others. See, e.g.,
– Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: 

Surveys in Combinatorics 1999, University Press (1999) 101-136

� “Artificial fitness functions”� “Artificial fitness functions”
– Analyze the progress of an EA by looking at the progress with respect 

to a potential function different from the fitness
– First done without drift analysis in by Droste&Jansen&Wegener (2002)
– Works often well with drift arguments (“choose a drift measure different 

from the fitness”)

28Benjamin Doerr

Additive Drift

� He&Yao (2001-04): First explicit use of drift analysis in EA theory.
– Used to give a simpler and more insightful proof of the O(n log n) run-

time of the (1+1) EA optimizing linear functions. 

� Additive Drift: Transform an additive expected progress into a run-time
– Start with 1000 Euros, spend at least 10 Euros each night on beer, and 

you’re broke after at most 100 nights.
Start with 1000 Euros, spend at least 10 Euros each night on beer, and 
you’re broke after at most 100 nights.

– Start with 1000 Euros, spend in expectation at least10 Euros each night 
(until you’re broke). When do you expect this to happen?
� Yipiieh, the hoped for at most 100 nights are true due to 

complicated maths

29Benjamin Doerr1317



Additive Drift: Details

30Benjamin Doerr

Additive vs. Multiplicative Drift

� Additive drift is strongest when you expect a steady (uniform) progress
– “spend 10 Euros each night”
– (1+1) EA optimizes LeadingOnes, single-source shortest paths

� Multiplicative drift is strongest when the progress is proportional to the 
distance from the optimumdistance from the optimum
– “spend half your money each night”
– natural: progress is easier when further away from optimum
– (1+1) EA optimizes OneMax, MST, Eulerian cycles, …

� The expected-time bound in the multiplicative setting can be derived from 
the additive drift theorem

� Tail bounds do not hold in the additive setting
31Benjamin Doerr

Lower Bounds (sketch)

� Additive drift theorem also works for lower bounds:
– “Start with 1000 Euros. If you expect to spend at most 10 Euros a night,  

then the expected time you’re broke is in at least 100 nights”
– Details: Exchange “≤” and “≥” in (i), (ii) and the conclusion of the 

additive drift theorem.

Negative (additive) drift (He&Yao, Giel&Lehre, Happ&Johannsen&Klein� Negative (additive) drift (He&Yao, Giel&Lehre, Happ&Johannsen&Klein
&Neumann, Oliveto&Witt)
– “Start with 1000 Euros. If you expect to earn 10 Euros a night, how 

unlikely is it that you’re broke within the next 100 years?”
– Needs some extra assumptions that “big losses are very unlikely”

� Currently no such results for multiplicative drift

32Benjamin Doerr

Point-wise vs. Average Drift (sketch)

� In the language of EA: Let x0, x1, x2… be a sequence of search points 
computed by some RSH. Let g be a potential function.

� All drift theorems shown above…
– only need something like that at all times t, the random search points xtand xt+1 satisfy E(g(xt) – g(xt+1) | g(xt) > 0) ≥ δ

but have only been applied using the stronger assumption of – but have only been applied using the stronger assumption of 
“point-wise drift”:
� for all search points x, E(g(xt) – g(xt+1) | xt = x) ≥ δ

– Advantage: If you can show point-wise drift, you don’t have to care 
about the distribution of the random search point xt

– Problem: You need to show good drift for every search point, even 
those occurring rarely

33Benjamin Doerr1318



Point-wise vs. Average Drift (2)

� The first to use less than point-wise drift was Jägersküpper (PPSN’08).

� Technical result: You can take the number of wrong bits as drift measure in 
the linear functions problem!
– Let x0, x1, x2,… be the sequence of search points stored by the (1+1) 

EA optimizing a linear function after each iteration. Let g = OneMax. 
Then ( ( ) – ( ) | ( )) ≥ / , some explicit constant.– Then E(g(xt) – g(xt+1) | g(xt)) ≥ c/n, c some explicit constant.

� Advantages: 
– More natural proof
– First reasonable constant for the total run-time: 

� 2.02 e n ln(n) (1+o(1))
� constant improved to 1.39 by DJW10 using J’s drift estimate 

together with multiplicative drift
34Benjamin Doerr

Adaptive Drift

� Problem: If the mutation rate p is higher than 7/n, then there are not drift 
measures that work for all linear functions [DJW10]
– Consequence: Not clear if the run-time is still O(n log n)

� Solution: For each mutation rate p and each linear function f take a 
custom-tailored drift measure [DG10]

Result: The (1+1) EA with mutation rate = / , any constant, finds – Result: The (1+1) EA with mutation rate p = c/n, c any constant, finds 
the optimum of any linear function in time O(n log n).

– Warning: Custom-tailors are not cheap…
– Bonus result: Same approach shows that the classic (1+1) EA with p = 

1/n finds the optimum of BinaryValue in time e n ln(n) (1±o(1))
� the same time as for OneMax ☺

35Benjamin Doerr

� Drift analysis: Show an expected progress and gain an expected run-time!

� Several drift theorems:

– additive: good when uniform progress

� also yields lower bounds

– multiplicative: good when progress proportional to distance from goal

Summary

– multiplicative: good when progress proportional to distance from goal

� also tail bounds: “with probability at least 1-exp(-…)…”

� Crucial: How to measure “progress”?

– simple & good: fitness

– using structural properties, e.g., “number of wrong bits”

– clever, e.g., important half of bits counts 5/4, others only 1.

– average drift: avoid problems with rare exceptions

– adaptive: custom-tailored measure for each instance

36Benjamin Doerr

� Tight bounds for combinatorial problems

– Minimum spanning tree

� Using fitness as progress measure, above I showed that the (1+1) 
EA finds an MST in time O(m2 log(mwmax))

� Does a better measure show O(m2 log(m)), which is the current 

Open Problems (1)

� Does a better measure show O(m log(m)), which is the current 

best lower bound?

– Same question for the single-criterion formulation of the single-source 
shortest path problem

� With fitness as progress measure: O(n3 log(nwmax)

� Best known lower bound O(n3 log(n))

37Benjamin Doerr1319



� Drift techniques:

– Multiplicative drift & lower bounds

� Not true: E(Xt+1|Xt) ≥ (1-δ) Xt ⇒ E(T) ≥ (1/δ) (ln(X0)+1)
� Something like this should be true if the Xt behave nicely, i.e., tend 

to be close to their expectation

Open Problems (2)

to be close to their expectation

– Additive drift & tail bounds

� Additive drift allows bounds on expected hitting times, but no good 
tail bounds (“with high probability…”)

� Tail bounds should hold if the Xt behave nicely

– Note: In all non-artificial problems, progress behaves nicely

Thanks a lot!
38Benjamin Doerr

� Benjamin Doerr and Leslie Goldberg. Adaptive drift analysis. In Proceedings of Parallel Problem Solving from Nature (PPSN 

XI), LNCS 6238, pages 32-41. Springer, 2010.

� Benjamin Doerr and Leslie A. Goldberg. Drift analysis with tail bounds. In Proceedings of Parallel Problem Solving from 

Nature (PPSN XI), LNCS 6238, pages 174-183. Springer, 2010.

� Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical 

Computer Science, 276(1-2):51-81, 2002.

� Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Drift analysis and linear functions revisited. In Proceedings of IEEE 

Congress on Evolutionary Computation (CEC 2010), pages 1967-1974. IEEE, 2010.

� Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In Proceedings of Genetic and 

Evolutionary Computation Conference (GECCO 2010), pages 1449-1456. ACM, 2010.

� Oliver Giel and Per Kristian Lehre. On the effect of populations in evolutionary multi-objective optimization. In Proceedings of 

Genetic and Evolutionary Computation Conference (GECCO 2006), pages 651-658. ACM, 2006.

� Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied 

References

� Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied 

Probability, 14(3):502-525, 1982.

� Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of fitness-proportional selection for 

optimizing linear functions. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2008), pages 953-

960. ACM, 2008.

� Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127(1):57-

85, 2001.

� Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing, 

3(1):21-35, 2004.

� Jens Jägersküpper. A blend of Markov-chain and drift analysis. In Proceedings of Parallel Problem Solving from Nature 

(PPSN X), LNCS 5199, pages 41-51. Springer, 2008.

� Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree 

problem. Theoretical Computer Science, 378(1):32-40, 2007.

� Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds in evolutionary computation. 

Algorithmica, 2011. In press.

39Benjamin Doerr

1320




