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intro

Instructor Biographies

• Dr. Thomas Bartz-Beielstein is a
professor for Applied Mathematics
at Cologne University of Applied
Sciences. He has published more
than several dozen research
papers, presented tutorials about
tuning, and has edited several
books in the field of
Computational Intelligence. His
research interests include
optimization, simulation, and
statistical analysis of complex
real-world problems

• Mike Preuss is research associate
at the Computer Science
Department, TU Dortmund. His
main fields of activity are EAs for
real-valued problems and their
application in numerous
engineering domains, the
development of the experimental
methodology for stochastic
optimization, and Computational
Intelligence techniques in
computer games (see DETA
track).

• Prof. Bartz-Beielstein and Mike Preuss invented the sequential
parameter optimization, which was applied as a tuner for numerous
optimization algorithms such as evolution strategies, differential evolution,
or particle swarm optimization
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intro

Objectives of the Tutorial

(O-1) Tuning. Making your algorithms faster (and more reliable)
(O-2) Understanding and Learning. Helping you to understand your

algorithms (so that forthcoming versions will run even much
faster)

(O-3) Provide Experimental Guidelines. Enables you to perform solid
experiments one can learn from where theory is not applicable

(O-3) Pros and Cons. Consider benefits and disadvantages of
state-of-the-art tuning approaches

(O-4) Networking. Meet and get into contact with others who are
interested in tuning. Discuss open issues and interesting
research projects in experimental research
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intro why experimentation?

Why Do We Need Experimentation?

• Practitioners need so solve problems, even if theory is not developed far
enough

• Counterargument of practitioners: Tried that once, didn’t work (expertise
needed to apply convincingly)

• We need to establish guidelines how to adapt the algorithms to practical
problems (or let them Self?)

• Helps theoreticians to find exploitable (parameter/problem) relations

Experimental methodology is improving, we are leaving the phase of
a) Funny but useless performance figures
b) Lots of better and better algorithms that soon disappear again
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intro why experimentation?

Why Do We Need Experimentation?

• Practitioners need so solve problems, even if theory is not developed far
enough

• Counterargument of practitioners: Tried that once, didn’t work (expertise
needed to apply convincingly)

• We need to establish guidelines how to adapt the algorithms to practical
problems (or let them Self?)

• Helps theoreticians to find exploitable (parameter/problem) relations

Instead, we converge to
a) Deliberate and justified choice of parameters, problems, performance

criteria—no more arbitrariness
b) Better generalizability (not quite resolved, but targetted)
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intro why experimentation?

Are We Alone (With This Problem)?

In natural sciences, experimentation is not in question

• Many inventions (batteries, x-rays, . . . ) made by
experimentation, sometimes unintentional

• Experimentation leads to theory, theory has to be
useful (can we do predictions?) This is an experiment

In computer science, the situation seems different

• 2 widespread stereotypes influence our view of
computer experiments:

a) Programs do (exactly) what algorithms specify
b) Computers (programs) are deterministic, so why

statistics? Is this an experiment?
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intro experimentation in computer science

Algorithm Engineering
How Theoreticians Handle it...(Recently)

• Algorithm Engineering is
theory + real data + concrete
implementations + experiments

• Principal reason for experiments:
Test validity of theoretical claims

• Are there important factors in practice that
did not go into theory?

• Approach also makes sense for
metaheuristics, but we start with no or
little theory

• Measuring (counting evaluations)
usually no problem for us
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intro experimentation in computer science

So What About Statistics?

Are the methods all there? Some are, but:

• Our data is usually not normal
• We can most often have lots of data
• This holds for algorithmics, also!
• These are not the conditions statisticians

are used to
• In some situations, there is just no

suitable test procedure
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⇒ There is a need for more statistics and more statistical methods.

Catherine McGeogh:
Our problems are unfortunately not sexy enough for the Statisticians...
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intro why tuning?

Algorithms, Parameters and the Reasoning for Tuning

• We have learned to think in parameters where others hide these as
constants

• Consequently, we include (generic!) adaptability of algorithms to
problems in the algorithm design

• Knowledge about parameter interactions helps us to understand
algorithms and problems

• This helps us to approach the final question: Which algorithm (or which
parameter set) do I apply for my problem ?

But:
• How do we do it?
• Tuning is expensive, cannot be applied in all situations

⇒ Experimental methodology and reliable tuning methods needed
�
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tuning goals & problems goals

Tuning: Goals

(TG-1) Performance. Important parameters; what should be optimized?
(TG-2) Comparison. Comparing the performance of heuristics
(TG-3) Conjecture. Good: demonstrate performance. Better: explain

and understand performance
Needed: Looking at the behavior of the algorithms, not only
results

(TG-4) Quality. Robustness (includes insensitivity to exogenous
factors, minimization of the variability) [Mon01]
Invariance properties (e.g., CMA-ES): Find out, for what
(problem, parameter, measure) spaces our results hold
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tuning goals & problems factors

First step: Archeology—Detect Factors

Figure: Schliemann in Troja

• “Playing trumpet to tulips” or “experimenter’s
socks”

• In contrast to field studies: Computer
scientists have all the information at hand

• Generating more data is relatively fast
• First classification:

algorithm
problem

⇒We have (beside others) a parameter problem,
many EAs highly depend on choosing them ‘right’
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tuning goals & problems factors

Components of an Experiment in Metaheuristics

algorithm design

algorithm (program)

parameter set

test problem

performance measure

termination criterion

initialization

algorithm (program)

performance measure

test problem

parameter set

problem designcontrol flow

data flow

induces
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tuning goals & problems factors

Classification

• Algorithm design
• Population size
• Selection strength

• Problem design
• Search space dimension
• Starting point
• Objective function

• Vary problem design =⇒ effectivity (robustness)
• Vary algorithm design =⇒ efficiency (tuning)
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tuning goals & problems factors

Factor Effects

• Important question: Does a factor influence the algorithm’s performance?
• How to measure effects?
• First model:

Y = f (~X ),

where
• ~X = (Xa,Xp), where Xa and Xp denote factors from the algorithm and

problem design, respectively and
• Y denotes some output (i.e., best function value from 1000 generations)

• Uncertainty analysis: compute average output, standard deviation,
outliers⇒ related to Y

• Sensitivity analysis: which of the factors are more important in influencing
the variance in the model output Y? ⇒ related to the relationship
between Xa,Xp and Y
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tuning goals & problems factors

Factors: Overview

Java version

hardware

color of experimenter's socks

weather

EXPECTED

algorithm design

POSSIBLE, UNWANTED

UNEXPECTED

problem design

operating system

room temperature
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tuning goals & problems settings

Problems and Algorithms

• Tuning can be performed for
(SASP) One single algorithm and one single problem instance
(SAMP) One single Algorithm and multiple problems instances
(MASP) Multiple algorithms and one single problem instance
(MAMS) Multiple algorithms and multiple problem instances

• How to perform comparisons?
• Adequate statistics?
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tuning goals & problems settings

SASP – Single Algorithm, Single Problem

• Typical real-world setting
• Determine important factors
• Optimization
• Crucial: number of function evaluations

• Benefit:
• $ $ $
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tuning goals & problems settings

SAMP – Single Algorithm, Multiple Problems

• Algorithm development
• Determine important factors
• Optimization
• Robustness

• Benefit:
• Determine important factors
• Understanding
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tuning goals & problems settings

MASP – Multiple Algorithms, Single Problem

• Research (beginner’s paper⇒ rejected)
• Optimization
• Note: multiple algorithms ∼ one algorithm with different parameters
• Tuning and comparison

• Benefit:
• Similarities between algorithms
• Understanding
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tuning goals & problems settings

MAMP – Multiple Algorithms, Multiple Problems

• Research (expert paper⇒ accepted)
• Comparison
• Huge complexity

• Benefit:
• Accepted paper

�
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tuning goals & problems tuning outcome

What do Tuning Methods Deliver?

• A best configuration from {perf (alg(argexo
t ))|1 ≤ t ≤ T} for T tested

configurations
• A spectrum of configurations, each containing a set of single run results
• Detect unsuitable parameter configurations
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tuning goals & problems tuning outcome

A Simple, Visual Approach: Sample Spectra

reached performance (minimization)
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tuning goals & problems tuning outcome

(Single) Effect Plots

• Large variances originate from averaging
• The τ0 and especially τ1 plots show different behavior on extreme values

(see error bars), probably distinct (averaged) effects/interactions

Bartz-Beielstein, Preuss (Cologne, Dortmund) Automatic and Interactive Tuning July 2011 23 / 58

1366



tuning goals & problems tuning outcome

One-Parameter Effect Investigation
Effect Split Plots: Effect Strengths

• Sample set partitioned into 3 subsets (here of equal size)
• Enables detecting more important parameters visually
• Nonlinear progression 1–2–3 hints to interactions or multimodality
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experimental primer

Research Question

• Not trivial⇒ many papers are not focused
• The (real) question is not: Is my algorithm faster

than others on a set of benchmark functions?
• What is the added value? Difficult in

Metaheuristics.
• Wide variance of treated problems
• Usually (nearly) black-box: Little is known

Horse racing: set up, run, comment...

Explaining observations leads to new questions:
• Multi-step process appropriate (also for tuning)
• Conjectures obtained from results shall itself be

tested experimentally
• Range of validity shall be explored (problems,

parameters, etc.)

Einstein thinking
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Research Question

• Not trivial⇒ many papers are not focused
• The (real) question is not: Is my algorithm faster

than others on a set of benchmark functions?
• What is the added value? Difficult in

Metaheuristics.
• Wide variance of treated problems
• Usually (nearly) black-box: Little is known

Horse racing: set up, run, comment...NO!

Explaining observations leads to new questions:
• Multi-step process appropriate (also for tuning)
• Conjectures obtained from results shall itself be

tested experimentally
• Range of validity shall be explored (problems,

parameters, etc.)

Einstein thinking
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experimental primer

How to Set Up Research Questions?
What do We Aim For?

It is tempting to create a new algorithm, but

• There are many existing algorithms not really understood well
• We shall try to aim at improving our knowledge about the ‘working set’
• When comparing, always ask if any difference is meaningful in practice

Usually, we do not know the ‘perfect question’ from the start

• An inherent problem with experimentation is that we do (should) not know
the outcome in advance

• But it may lead to new, better questions
• Try small steps, expect the unexpected
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experimental primer performance measuring

“Traditional” Measuring in EC
Simple Measures

• MBF: mean best fitness
• AES: average evaluations to solution
• SR: success rates, SR(t)⇒ run-length distributions (RLD)
• best-of-n: best fitness of n runs

But, even with all measures given: Which algorithm is better?

(figures provided by Gusz Eiben)
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experimental primer performance measuring

Aggregated Measures
Especially Useful for Restart Strategies

Success Performances:

• SP1 [HK04] for equal expected lengths of successful and unsuccessful
runs E(T s) = E(T us):

SP1 =
E(T s

A)

ps
(1)

• ERT(ftarget ) as used in the BBOB setup for different expected lengths,
unsuccessful runs are stopped at FEmax :

ERT (ftarget) =
#FEs(fbest ≥ ftarget)

#succ
(2)

Probably still more aggregated measures needed (parameter tuning depends
on the applied measure)
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experimental primer performance measuring

Choose the Appropriate Measure

• Design problem: Only best-of-n fitness values are of interest
• Recurring problem or problem class: Mean values hint to quality on a

number of instances
• Cheap (scientific) evaluation functions: exploring limit behavior is

tempting, but is not always related to real-world situations

In real-world optimization, 104 evaluations is a lot,
sometimes only 103 or less is possible:

• We are relieved from choosing termination criteria
• Substitute models may help (Algorithm based validation)
• We encourage more research on short runs (horizontal)
• Or tasks reachable with short runs (vertical)

Selecting a performance measure is a very important step
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experimental primer performance measuring

Convergence of Measuring Perspectives

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

F
un

ct
io

n 
va

lu
e

f
opt

t
max

(A)

(B)

(Thomas Bartz-Beielstein) (Anne Auger/Nikolaus Hansen)

• Vertical: Probably nearer to real-world situation
• Horizontal: Easier to interpret (BBOB’09), but targets must be fixed
• However, we have still distributions! Mean or median may be insufficient!
• Carlos Fonseca: Attainment surfaces?
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experimental primer visualization&reporting

Diagrams Instead of Tables

algorithm
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1.0 Method Peak ratio Basin ratio Peak accuracy Distance accuracy
Best Avg. Best Avg. Best Avg. Best Avg.

F1, 1 global optimum, 9 local ones
TSC2 0.99 0.84 1 0.88 0.13 1.84 0.04 0.79
CDE 0.88 0.79 0.98 0.93 0.52 1.59 0.11 0.41
TSC [14] 0.85 0.64 0.83 0.66 4.52 7.7 1.29 3.26
NCMA-ES 0.8 0.49 0.9 0.59 1.85 8.89 0.88 3.87
SCGA 0.66 0.18 0.99 0.264 8.74 18.59 0.98 11.56
DFS 0.37 0.16 0.37 0.16 14.46 20.93 5.24 11.52

F2, 2 global, 4 local optima
TSC2 1 0.77 1 0.77 6.93e-04 2.91 0.02 2.09
NCMA-ES 1 0.59 1 0.61 1.72e-03 3.9 0.02 3.19
CDE 1 0.75 1 0.76 0.02 3.3 0.1 1.99
SCGA 0.96 0.32 1 0.35 0.39 6.37 0.44 7.02
DFS 0.67 0.26 0.67 0.26 4.64 7.27 2.73 6.22
TSC [14] 0.63 0.46 0.66 0.44 3.93 6.18 3.44 6.18

F3, 2 dimensions, 1 optimum
NCMA-ES 1 1 1 1 4.6e-68 3.92e-6 6.48e-35 5.84e-4
CDE 1 1 1 1 9.47e-40 4.48e-04 1.96e-20 5.25e-03
TSC2 1 1 1 1 5.85e-12 1.81e-07 1.61e-06 9.32e-05
SCGA 1 1 1 1 1.53e-11 2.86e-07 2.41e-06 1.65e-04
TSC [14] 1 1 1 1 2.48e-10 1.75e-07 4.9e-06 9.08e-05
DFS 1 1 1 1 2.55e-09 4.17e-06 4.23e-05 8.12e-04

F3, 10 dimensions, 1 optimum
CDE 1 0.83 1 1 2.66e-25 0.11 4.07e-13 0.15
NCMA-ES 1 0.73 1 1 1.28e-17 0.08 2.51e-09 0.19
TSC2 1 0.73 1 1 2.36e-06 0.15 0.001 0.23
TSC [14] 1 0.74 1 1 2.79e-06 0.12 0.003 0.51
SCGA 1 0.72 1 1 1.03e-05 1.43 0.003 0.45
DFS 1 0.72 1 1 3.12e-05 0.14 0.005 0.22

F4, 2 dimensions, 1 global optimum/ many local ones
NCMA-ES 1 0.86 1 0.88 0 0.19 9.05e-9 0.14
DFS 1 0.98 1 0.98 9.13e-08 0.02 7.24e-06 0.02
SCGA 1 0.99 1 0.99 1.4e-07 0.01 1.46e-05 0.01
CDE 1 0.88 1 0.98 4.29e-07 0.11 3.93e-05 0.03
TSC2 1 0.8 1 0.94 2.23e-06 1.63 8.23e-05 0.05
TSC [14] 1 0.74 1 0.93 5.04e-05 1.73 5.1e-04 0.07

F4, 10 dimensions, 1 global optimum/ many local ones
SCGA 1 0.35 1 0.66 0.002 18.42 0.003 1.71
TSC2 1 0.04 1 0.27 0.002 39.78 0.003 2.57
DFS 1 0.31 1 0.44 0.003 8.93 0.003 1.44
TSC [14] 0.97 0.03 1 0.28 0.03 51.46 0.03 6.08
CDE 0.9 0.12 0.97 0.19 0.09 18.68 0.04 1.68
NCMA-ES 0 0 0 0 26.9 23.6 2.46 3.32

F5, 2 dimensions, 1 global optimum/ many local ones
TSC2 0.77 0.26 0.97 0.67 14.74 369.93 9.4e-04 0.49
DFS 0.7 0.21 0.73 0.24 58.09 164.85 1.34 3.05
TSC [14] 0.63 0.19 0.73 0.29 273.64 934.45 0.96 1.07
SCGA 0.47 0.21 0.6 0.31 81.47 317.24 0.11 2.51
CDE 0 0.003 1 0.96 20.65 134.64 0.01 0.07
NCMA-ES 0 0 0 0 1700 1840 1.62 0.71

F5, 10 dimensions, 1 global optimum/ many local ones
NCMA-ES 0 0 0 0.01 1810 1900 9.44 8.82
TSC2 0 0 0 0 770.48 1234.14 9.64 11.24
DFS 0 0 0 0 569.6 870.64 11.08 12.85
CDE 0 0 0 0 1076.2 1301.02 11.99 9.32
SCGA 0 0 0 0.3 762.8 1311.85 12.95 11.49
TSC [14] 0 0 0 0 961.59 1151.36 33.33 32.37
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experimental primer visualization&reporting

Reporting and Keeping Track of Experiments

Around 40 years of experimental tradition in EC, but:
• No standard scheme for reporting experiments (experimental protocols)
• Instead: one (“Experiments”) or two (“Experimental Setup” and “Results”)

sections in papers, providing a bunch of largely unordered information
• Affects readability and impairs reproducibility

Keeping experimental journals helps:
• Record context and rough idea
• Report each experiment
• Running where (machine)
• Finished when (date/time), link to result file(s)

⇒We suggest a 7-part reporting scheme
(also well suited for tuning experiments)
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experimental primer visualization&reporting

Suggested Report Structure

ER-1: Focus/Title the matter dealt with
ER-2: Pre-experimental planning first—possibly explorative—program

runs, leading to task and setup
ER-3: Task main question and scientific and derived statistical hypotheses to

test
ER-4: Setup problem and algorithm designs, sufficient to replicate an

experiment
ER-5: Results/Visualization raw or produced (filtered) data and basic

visualizations
ER-6: Observations exceptions from the expected, or unusual patterns

noticed, plus additional visualizations, no subjective assessment
ER-7: Discussion test results and necessarily subjective interpretations for

data and especially observations

This scheme is well suited to report SPO experiments (but not only)
�

Bartz-Beielstein, Preuss (Cologne, Dortmund) Automatic and Interactive Tuning July 2011 33 / 58

spot sequential parameter optimization toolbox

SPOT

• Sequential parameter optimization toolbox (SPOT)
• Developed over recent years by Thomas Bartz-Beielstein, Christian

Lasarczyk, and Mike Preuss [BBLP05]
• Main goals of SPOT

• Determination of improved parameter settings for optimization algorithms
• Provide statistical tools for analyzing and understanding their performance
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spot sequential parameter optimization toolbox

SPOT: Definition

Definition (Sequential Parameter Optimization Toolbox)

SPOT-1 Use the available budget (e.g., simulator runs, number of
function evaluations) sequentially:

• Use information from the exploration of the search space to
guide the search by building one or several meta models

• Choose new design points based on predictions from the
meta model(s)

• Refine the meta model(s) stepwise to improve knowledge
about the search space

SPOT-2 If necessary, try to cope with noise by improving confidence.
Guarantee comparable confidence for search points

SPOT-3 Collect information to learn from this tuning process, e.g., apply
explorative data analysis

SPOT-4 Provide mechanisms both for interactive and automated tuning
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spot sequential parameter optimization toolbox

SPOT Applications

• SPOT was successfully applied in the fields of
• bioinformatics [Vol06, FMKH09]
• environmental engineering [KZBB09, FBBD+10]
• fuzzy logic [Yi08]
• multimodal optimization [PRT07]
• statistical analysis of algorithms [Las07, TM09]
• multicriteria optimization [BBNWW09]
• genetic programming [LB05]
• particle swarm optimization [BBPV04, KGG07]
• automated and manual parameter

tuning [Fob06, SE09, HBBH+09, HHLBM10]
• graph drawing [Tos06, Pot07]
• aerospace and shipbuilding industry [NQBB06, RPQ09]
• mechanical engineering [MMLBB07]
• chemical engineering [HBK+08]

• Bartz-Beielstein [BB10] collects publications related to the sequential
parameter optimization
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spot sequential parameter optimization toolbox

SPOT Tasks

• SPOT provides tools to perform the following tasks:
• Initialize. Generate an initial design: parameter region and constant

algorithm parameters
• Run. Start optimization algorithm with configurations of the generated

design. The algorithm provides the results to SPOT
• Sequential step. Generate a new design, based on information from the

algorithms result. A prediction model is used in this step. Several generic
prediction models are available in SPOT already. User-specified prediction
models can easily be integrated

• Report. Generate an analysis, based on information from the results. SPOT
contains some scripts to perform a basic regression analysis and plots such
as histograms, scatter plots, plots of the residuals, etc.

• Automatic mode. In the automatic mode, the steps run and sequential are
performed after an initialization for a predetermined number of times.
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spot sequential parameter optimization toolbox

Factors, Designs and Predictors

• Factors
• Numerical
• Categorical (ordered and unordered)

• Designs
• Classical fractional factorial designs
• Space-filling designs, e.g., Latin hypercube designs

• Predictors
• Linear regression
• Regression trees
• Tree based Gaussian process
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spot sequential parameter optimization toolbox
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• Predictors for very expensive
optimization runs (real-world
problems)

• Tree based Gaussian
processes

• DACE
• Predictors for simple

optimization runs (theoretical
investigations)

• Classical regression models
• Regression trees

• Combinations are possible⇒
Ensemble-based modeling,
Meta predictors
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case studies settings

SPOT Applications

• SASP demo
• SAMP demo
• MASP demo
• MAMP demo
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case studies settings

SPOT: Sensitivity Analysis
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• Sensititvity Analysis based
on

• Variance (ANOVA)
• Regression models
• DACE’s θ
• Regression trees
• etc.

• Combinations are possible
⇒ Meta analysis
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case studies settings

SPOT: EDA

• Interaction plots
• Main effect plots
• Regression trees
• Scatter plots

• Box plots
• Trellis plots
• Design plots
• ...
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case studies settings

SPOT: EDA
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case studies automated — interactive

Automated versus Interactive Tuning

• Interactive
• Expert knowledge
• Simple models and designs, e.g., classical fractional factorial designs and

response surface
• Insight
• Understanding

• Automated
• Time consuming
• Complex models, e.g., (tree based) Gaussian process
• Limited insight
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further approaches

SPOT is not alone...

Tuning methods are an active research area:
• Comparison of algorithms without parameter tuning is comparing

unsuitable algorithms
• Tuning reveals parameter relevance and interactions

Recent methods:
• F-Race (Birattari, Stützle): Iterative bad parameter elimination
• REVAC (Nannen, Eiben, Smit): Meta-EDA
• Probably more to come. . .
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further approaches

SPOT Open Questions

• Models?
• (Linear) Regression models
• Stochastic process models

• Designs?
• Space filling
• Factorial

• Statistical tools
• Significance
• Standards

• SPOT Community:
• Provide SPOT interfaces for

important optimization
algorithms

• Simple and open
specification

• Currently available for
several algorithms, more
than a dozen applications

• SPO is a methodology — more than just an optimization algorithm
(Synthese)

• Recent trend: SPOT used as an optimizer

�
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problems & development what can go wrong?

A Famous Example: The Rosenberg Study

• Problem:
• Jobs build binary tree
• Parallel computer with ring topology

• 2 algorithms:
Keep One, Send One (KOSO) to
my right neighbor
Balanced strategy KOSO∗: Send
to neighbor with lower load only

• Is KOSO∗ better than KOSO?
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problems & development what can go wrong?

Experimental Analysis: What is the Problem?

• Hypothesis: Algorithms influence running time
• But: Analysis reveals

# Processors und # Jobs explain 74 % of the variance of the running
time
Algorithms explain nearly nothing

• Why?
Load balancing has no effect, as long as no processor starves.
But: Experimental setup produces many situations in which
processors do not starve

• Furthermore: Comparison based on the optimal running time (not the
average) makes differences between KOSO und KOSO∗.

• Summary: Problem definitions and performance measures (specified as
algorithm and problem design) have significant impact on the result of
experimental studies
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problems & development what can go wrong?

Floor and Ceiling Effects

• Floor effect: Compared algorithms attain set task very rarely
⇒ Problem is too hard

• Ceiling effect: Algorithms nearly always reach given task
⇒ Problem is too easy

If problem is too hard or too easy, nothing is shown.
Tuning processes will fail because of insufficient feedback!

• Pre-experimentation is necessary to obtain reasonable tasks
• If task is reasonable (e.g. practical requirements), then algorithms are

unsuitable (floor) or all good enough (ceiling), statistical testing does not
provide more information

• Arguing on minimal differences is statistically unsupported and
scientifically meaningless
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problems & development what can go wrong?

Confounded Effects

Two or more effects or helper algorithms are merged into a new technique,
which is improved

• Where does the improvement come
from?

• It is necessary to test both single
effects/algorithms, too

• Either the combination helps, or only
one of them

• Knowing that is useful for other
researchers! complex machinery
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problems & development what can go wrong?

Underestimated Randomness

• Idea: Find Pareto front of two tuning criteria
• Parameter changes not interpretable
• Validation failed
• Reason: Deviations much too high!
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More difficulties: See also papers of the GECCO’09 workshop
Learning from Failures in Evolutionary Computation (LFFEC)
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problems & development what can go wrong?

There Is a Problem With the Experiment

After all data is in, we realize that something was wrong (code, parameters,
environment?), what to do?

• Current approach: Either do not mention it, or redo everything
• If redoing is easy, nothing is lost
• If it is not, we must either:

• Let people know about it, explaining why it probably does not change results
• Or do validation on a smaller subset: How large is the difference (e.g.

statistically significant)?

• Do not worry, this situation is rather normal
• Thomke: There is nearly always a problem with an experiment
• Early experimentation reduces the danger of something going completely

wrong
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problems & development tuning efficiency

Efficiency vs. Adaptability

Most existing experimental studies focus on the efficiency of optimization
algorithms, but:

• Adaptability (how expensive is it to adapt the algorithm) to a problem is
usually not measured, although

• It is known as one of the important advantages of EAs (this is all tuning is
about!)

• Measure suggested in [Pre09]
• Adaptability is the hardness of the tuning problem

Interesting, previously neglected aspects:
• Interplay between adaptability and efficiency?
• What is the problem spectrum an algorithm performs well on?
• Systematic investigation may reveal inner logic of algorithm parts

(operators, parameters, etc.)
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problems & development tuning efficiency

How to Tune On Real-World Problems?
Idea: We build a surrogate model of the problem and use it for algorithm
tuning, then apply tuned algorithm to original problem
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• Possible solution for expensive problems, but can this work?
• Yes, but we need enough points to capture the local structure of the

problem

⇒ First successful study (Preuss/Rudolph/Wessing) GECCO’10
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problems & development tuning efficiency

Realtime Tuning
(Wessing/Preuss/Rudolph), GECCO’11

Idea: Modern EA’s as the CMA-ES need many restarts, why not do these with
(slightly) different parameters?

0 20 40 60 80

−
3

−
2

−
1

0
1

2
3

restarts IPOP−CMAES

lo
g
1
0
(R

T
(I

P
O

P
−

C
M

A
E

S
)/

R
T

(S
P

O
−

C
M

A
E

S
))

●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

SPO−CMA−ES

IP
O

P
−

C
M

A
−

E
S

2D

3D

5D

10D

20D

40D

• On non-trivial problem instances, this is nearly always an advantage
• Does not help on trivial or very hard instances (floor/ceiling effects)
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problems & development tuning efficiency

Discussion

• SPO is not the final solution—it is one possible (but not necessarily the
best) solution

• Goal: continue a discussion in EC, transfer results from statistics and the
philosophy of science to computer science

• Standards for good experimental research
• Review process
• Research grants
• Meetings
• Building a community
• Teaching
• ...
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suggested readings

Reference

• Please check
http://www.gm.fh-koeln.de/campus/personen/
lehrende/thomas.bartz-beielstein/00489/

for updates, software, etc.
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suggested readings

New Book on Experimental Research
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Paquete · Preuss (Eds.)

Experimental Methods for the  
Analysis of Optimization Algorithms
In operations research and computer science it is common practice to evaluate the performance of  

optimization algorithms on the basis of computational results, and the experimental approach should 

follow accepted principles that guarantee the reliability and reproducibility of results. However,  

computational experiments differ from those in other sciences, and the last decade has seen considerable 

methodological research devoted to understanding the particular features of such experiments and 

assessing the related statistical methods. 

This book consists of methodological contributions on different scenarios of experimental analysis.  

The first part overviews the main issues in the experimental analysis of algorithms, and discusses the 

experimental cycle of algorithm development; the second part treats the characterization by means of 

statistical distributions of algorithm performance in terms of solution quality, runtime and other  

measures; and the third part collects advanced methods from experimental design for configuring and 

tuning algorithms on a specific class of instances with the goal of using the least amount of  

experimentation. The contributor list includes leading scientists in algorithm design, statistical design, 

optimization and heuristics, and most chapters provide theoretical background and are enriched with case 

studies. 

This book is written for researchers and practitioners in operations research and computer science who 

wish to improve the experimental assessment of optimization algorithms and, consequently, their design.

This book belongs on the shelf of anyone interested in carrying out experimental research 

on algorithms and heuristics for optimization problems ... Don’t keep this book on your 

shelf: read it, and apply the techniques and tools contained herein to your own algorithmic 

research project. Catherine C. McGeoch (Amherst College)

 

Here you will find aspects that are treated scientifically by experts in this exciting  

domain, offering their up-to-date know-how and leading even into philosophical domains.

 Hans-Paul Schwefel (Technische Universität Dortmund)

Thomas Bartz-Beielstein 
Marco Chiarandini 
Luís Paquete · Mike Preuss (Eds.) • Experimental

Methods for the
Analysis of
Optimization
Algorithms

• See also
Kleijnen [Kle08],
Saltelli et al.

http://www.springer.com/computer/ai/book/978-3-642-02537-2
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