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Introduction

Swarm Intelligence

Collective behavior of a “swarm” of agents.

Examples from Nature

dome construction by termites

communication of bees

ant trails

foraging behavior of fish schools and bird flocks

swarm robotics

Plenty of inspiration for optimization.
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Introduction

ACO and PSO

Ant colony optimization (ACO)

inspired by foraging behavior of ants

artificial ants construct solutions using pheromones

pheromones indicate attractiveness of solution component

Particle swarm optimization (PSO)

mimics search of bird flocks and fish schools

particles “fly” through search space

each particle is attracted by own best position and best position of neighbors
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Introduction

Theory

What “theory” can mean

convergence analysis

analysis of simplified models of algorithms

empirical studies on test functions

runtime analysis / computational complexity analysis

. . .

Example Question

How long does it take on average until algorithm A finds a target solution on
problem P?

Notion of time: number of iterations, number of function evaluations
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Introduction

Content

What this tutorial is about

runtime analysis

simple variants of swarm intelligence algorithms

insight into their working principles

impact of parameters and design choices on performance

what distinguishes ACO/PSO from evolutionary algorithms?

performance guarantees for combinatorial optimization

methods and proof ideas

What this tutorial is not about

convergence results

analysis of models of algorithms

no intend to be exhaustive
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Pseudo-Boolean Optimization

Ant Colony Optimization (ACO)

Main idea: artificial ants communicate via pheromones.

Scheme of ACO

Repeat:

construct ant solutions guided by pheromones

update pheromones by reinforcing good solutions
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Pseudo-Boolean Optimization

Pseudo-Boolean Optimization

Goal: maximize f : {0, 1}n → R.

Often considered in theory of evolutionary algorithms.
Established and well-understood test bed for search heuristics.

Illustrative test functions

OneMax(x) =
n∑

i=1

xi

BinVal(x) =
n∑

i=1

2n−i · xi

LeadingOnes(x) =
n∑

i=1

i∏

j=1

xj

Needle(x) =
n∏

i=1

xi
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Pseudo-Boolean Optimization

ACO in Pseudo-Boolean Optimization

Solution Construction

x1 = 1

x1 = 0

x2 = 1

x2 = 0

x3 = 1

x3 = 0

x4 = 1

x4 = 0

x5 = 1

x5 = 0

v0 v1 v2 v3 v4 v5

Probability of choosing an edge equals pheromone on the edge.

Initial pheromones: τ(xi = 0) = τ(xi = 1) = 1/2.

Note: no linkage between bits.

Pheromones τ(xi = 1) suffice to describe all pheromones.
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Pseudo-Boolean Optimization

ACO in Pseudo-Boolean Optimization (2)

Pheromone update: reinforce some good solution x .
(x = best-so-far/iteration-best/. . . )

Strength of update determined by evaporation factor 0 ≤ ρ ≤ 1:

τ ′(xi = 1) =

{
(1− ρ) · τ(xi = 1) if xi = 0

(1− ρ) · τ(xi = 1) + ρ if xi = 1

Small ρ: slow adaptation
Large ρ: quick adaptation

Pheromone borders as in MAX-MIN Ant System (Stützle and Hoos, 2000):

τmin ≤ τ ′ ≤ 1− τmin

Default choice: τmin := 1/n (cf. standard mutation in EAs).
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Pseudo-Boolean Optimization

Theory of ACO

Analyses performed for:

illustrative test problems: OneMax, LeadingOnes, . . .

problem classes: unimodal functions, linear functions

constructed problems

combinatorial optimization

minimum spanning trees
TSP
shortest path problems
stochastic shortest paths
minimum cut problem

Focus on simple ACO algorithms

no heuristic information

fixed amount of pheromone increase

one ant in each iteration
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Pseudo-Boolean Optimization

One Ant?

Most ACO algorithms analyzed: one ant per iteration.

One ant at a time, many ants over time.

Steady-state GA

Probabilistic model:
Population

New solutions:
selection + variation

Environmental selection

Ant Colony Optimization

Probabilistic model:
Pheromones

New solutions:
construction graph

Selection for reinforcement
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Pseudo-Boolean Optimization

Evolutionary Algorithms vs. ACO

(1+1) EA

Start with uniform random solution x∗ and repeat:

create x by flipping each bit independently with probability 1/n

replace x∗ by x if f (x) ≥ f (x∗).

(1+1) EA: Probability of setting bit to 1 is in {1/n, 1− 1/n}.

ACO: Probability of setting bit to 1 is in [1/n, 1− 1/n].

Exception: ρ = 1 ⇒ ACO = (1+1) EA.
Some ACO algorithms generalize some evolutionary algorithms.
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Pseudo-Boolean Optimization 1-ANT

1-ANT (Neumann and Witt, 2006)

Construct x

x∗ := x

Pheromone update w. r. t. x∗

f (x) ≥ f (x∗)

Note: each new x∗ is reinforced only once.
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Pseudo-Boolean Optimization 1-ANT

1-ANT: Stagnation

Behavior on OneMax (Neumann and Witt, 2006), LeadingOnes and BinVal
(Doerr, Neumann, Sudholt, and Witt, 2007):

Large ρ (quick adaptation)

E(f (x))

f (x∗) . . .

time

Pheromone model follows best solution found so far.
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Pseudo-Boolean Optimization 1-ANT

1-ANT: Stagnation

Small ρ (slow adaptation)

E(f (x))

f (x∗) . . .

time

New solutions are not stored in pheromones quickly enough as 1-ANT reinforces
each new x∗ only once!

Phase transition w. r. t. ρ. Location depends on problem.
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Pseudo-Boolean Optimization MMAS with best-so-far update
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS* (Gutjahr and Sebastiani, 2008)

Construct x

x∗ := x

Pheromone update w. r. t. x∗

f (x) > f (x∗)

Note: best-so-far solution x∗ is constantly reinforced.
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Pseudo-Boolean Optimization MMAS with best-so-far update

Fitness-level Method for the (1+1) EA

A7

A6

A5

A4

A3

A2

A1

fi
tn

es
sPr((1+1) EA leaves Ai ) ≥ si

Expected optimization time of (1+1) EA at most
m−1∑
i=1

1
si

.
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS*

Pheromones on 1-edges

1
n

1− 1
n

x∗ 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0

After (ln n)/ρ reinforcements of x∗ MMAS* temporarily behaves like (1+1) EA.

Fitness-Level Method with Ai = search points with i-th fitness value

(1+1) EA:
m−1∑

i=1

1

si
MMAS*: m · ln n

ρ
+

m−1∑

i=1

1

si
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Pseudo-Boolean Optimization MMAS with best-so-far update
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Pseudo-Boolean Optimization MMAS with best-so-far update

Bounds with Fitness Levels

OneMax:

si ≥ (n − i) · 1

n
·
(

1− 1

n

)n−1

≥ n − i

en

Theorem

(1+1) EA: en
n−1∑

i=0

1

n − i
= O(n log n)

MMAS*: n · ln n

ρ
+ en

m−1∑

i=0

1

n − i
= O((n log n)/ρ)
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Pseudo-Boolean Optimization MMAS with best-so-far update

Bounds with Fitness Levels (2)

LeadingOnes

si ≥
1

n
·
(

1− 1

n

)n−1

≥ 1

en

Theorem

(1+1) EA: en2 MMAS*: n · ln n

ρ
+ en2 = O(n2 + (n log n)/ρ)

Unimodal functions with d function values:

Theorem

(1+1) EA: end MMAS*: d · ln n

ρ
+ end = O(nd + (d log n)/ρ)
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Pseudo-Boolean Optimization MMAS with best-so-far update

Discussion

Q: Does that mean that MMAS* is always worse than the (1+1) EA?

A: No, it only means that we get worse upper bounds!

Remarks

method relies on MMAS* simulating the (1+1) EA

neglect effects when pheromones not at their bounds

real expected running times may differ from upper bounds if many/difficult
fitness levels are skipped
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Pseudo-Boolean Optimization MMAS with best-so-far update

Running Times

How to make sense of running times like O(n2 + (n log n)/ρ)?

O(time for improvements(n) + time for pheromone adaptation(n, ρ))

Time for pheromone adaptation =̂ price for diverse search.

How large is this price for diverse search?

General lower bound (Neumann, Sudholt, and Witt, 2009)

Expected time of MMAS* on any function with unique global optimum is
Ω((log n)/ρ) if 1/poly(n) ≤ ρ ≤ 1/2.

Conjecture

Can be improved to Ω
(

n
ρ log(1/ρ)

)
.
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Pseudo-Boolean Optimization MMAS with best-so-far update

Layering of Pheromones

So far: adaptation time of (ln n)/ρ per fitness level.
Can we argue with smaller adaptation times?

Trade-off in analysis:

allow large adaptation time
⇒ pheromones guaranteed to be well adapted
⇒ good guarantee to rediscover adapted bit values.

small adaptation time
⇒ worse guarantees, pheromones may be not well adapted
⇒ worse bound for time to rediscover adapted bit values.

Example: improving O(n2 + (n log n)/ρ) bound for LeadingOnes.
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Pseudo-Boolean Optimization MMAS with best-so-far update

Layering of Pheromones for LeadingOnes

(Lower bounds on) pheromones on LeadingOnes

1
n

1− 1
n

best-so-far 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1

Theorem (Neumann, Sudholt, and Witt, 2009)

Bounds for MMAS and MMAS* on LeadingOnes of O(n2 + n/ρ) and

O
(

n2 · (1/ρ)ε + n/ρ
log(1/ρ)

)
for every constant ε > 0.

Layering approach also works for BinVal and shortest paths.
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Pseudo-Boolean Optimization MMAS with best-so-far update

Strict Selection

Most ACO algorithms replace x∗ only if f (x) > f (x∗).
Danger: algorithm gets stuck on first point of a plateau.

MMAS* on Needle: first solution is 0n with probability 2−n.
After pheromone freezing, the probability of finding the needle is n−n.

Theorem (Neumann, Sudholt, Witt, 2009)

If ρ ≥ 1/poly(n) the expected optimization time of MMAS* on Needle is
Ω(2−n · nn) = Ω((n/2)n).
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS on Needle

Define variant MMAS of MMAS* replacing x∗ if f (x) ≥ f (x∗).

MMAS: pheromones on each bit perform a random walk.

Theorem (Neumann, Sudholt, Witt, 2009 and Sudholt, 2011)

The expected time of MMAS on Needle is O(n2/ρ2 log n · 2n).

Proof ideas using tools from Markov Chain Monte Carlo (Sudholt, 2011):

Consider random walk of MMAS on the constant function.

Stationary distribution: uniform solution construction.

After mixing time O(n2/ρ2 log n) MMAS is close to stationarity.

After every period of O(n2/ρ2 log n) iterations the needle is found with
probability Ω(2−n).
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS on Needle: Experiments, n = 16

10000

100000

1e+06

2-292-272-252-232-212-192-172-152-132-11 2-9 2-7 2-5 2-3 2-1

ρ

MMAS
n

e/(e−1)·2n

ρ = 1: MMAS = (1+1) EA.
ρ very small: MMAS ≈ random search.

Intermediate ρ: MMAS tends to resample.
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS on unimodal functions

MMAS is better than MMAS* on plateaus.
Does MMAS perform worse on unimodal problems?

Switching between equally fit solutions can prevent freezing.

Pheromones on 1-edges

1
n

1− 1
n

x∗ 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0

0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0

Fitness-level method breaks down!
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Pseudo-Boolean Optimization MMAS with best-so-far update
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS on unimodal functions

Theorem

The expected optimization time of MMAS on any unimodal function with d
values is O((dn2 log n)/ρ).
(Recall for MMAS*: O(nd + (d log n)/ρ).)

After (ln n)/ρ steps a solution x with f (x) ≥ f (x∗) has been found with good
probability.

Conditioning on f (x) ≥ f (x∗), the probability that f (x) > f (x∗) is Ω(1/n2).

Every non-optimal search point y has a better Hamming neighbor z .
Prob(construct z) ≥ 1/n · Prob(construct y).
A better Hamming neighbor z can be “shared” by up to n search points
y1, . . . , yn.

Fitness improvement after expected time O((n2 · log n)/ρ).

Optimum found after d improvements.
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS for linear functions

Same idea, with a clever fitness-level partition due to Wegener (2001):

Theorem (Kötzing, Neumann, Sudholt, Wagner, 2011)

The expected optimization time of MMAS* and MMAS on any linear function
f (x) = w0 +

∑n
i=1 wixi with positive weights is O((n3 log n)/ρ).

Good news

MMAS* and MMAS have polynomial expected optimization time on linear
functions and unimodal functions with d = poly(n) values, if ρ ≥ 1/poly(n).

Bad news

Loose bounds for many functions, including OneMax:
MMAS*: O((n log n)/ρ) and MMAS: O((n3 log n)/ρ).
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Pseudo-Boolean Optimization MMAS with best-so-far update

Pheromone Distributions

Assuming the sum of pheromones is fixed, what is the worst possible distribution?

Solution for OneMax due to Gleser, 1975:

Pheromones on 1-edges

1
n

1− 1
n

Worst case: all pheromones (but one) at borders.

Theorem (Kötzing, Neumann, Sudholt, and Wagner, 2011)

O(n log n + n/ρ) on OneMax for both MMAS* and MMAS.
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Pseudo-Boolean Optimization MMAS with best-so-far update

Experiments (Kötzing et al., 2011)

MMAS* MMAS

MMAS better than MMAS*

MMAS with ρ = 0.1 better than (1+1) EA (=MMAS at ρ = 1)!

does not hold for MMAS*
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Pseudo-Boolean Optimization MMAS with best-so-far update

Explanation

Possible explanation: it helps to reward different bits.

Example for two bits and ρ = 0.2

1
n

1− 1
n

Prob(both 1) = 0.25

1
n

1− 1
n

Prob(both 1) ≈ 0.22

1
n

1− 1
n

Prob(both 1) ≈ 0.25

Proper ρ: MMAS remembers past 1-bits.

Open Problem

Prove that MMAS with proper ρ is faster than MMAS* and (1+1) EA.
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Pseudo-Boolean Optimization Hybridization of MMAS with local search
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Pseudo-Boolean Optimization Hybridization of MMAS with local search

ACO with Local Search

Scheme of ACO

Repeat:

construct ant solutions guided by pheromones

local search

update pheromones by reinforcing good solutions

How does the addition of local search affect search dynamics?
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Pseudo-Boolean Optimization Hybridization of MMAS with local search

ACO with Local Search (2)

Neumann, Sudholt, Witt, 2008

distributions of MMAS*

path with
increasing quality

start

distributions of MMAS-LS*

local optimum
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Pseudo-Boolean Optimization Hybridization of MMAS with local search

Exponential Performance Gaps

0n

1n

target

x∗
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Pseudo-Boolean Optimization Hybridization of MMAS with local search

Exponential Performance Gaps

0n

1n

target

M
M

A
S

*

x∗
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Pseudo-Boolean Optimization Hybridization of MMAS with local search

Exponential Performance Gaps

0n

1n

target

lo
ca

l
se

ar
ch

x∗
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Pseudo-Boolean Optimization Hybridization of MMAS with local search

Exponential Performance Gaps

0n

1n

target

x∗

h
yb

ri
d
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Pseudo-Boolean Optimization MMAS with iteration-best update
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Pseudo-Boolean Optimization MMAS with iteration-best update

Iteration-Best Update

λ-MMASib

Repeat:

construct λ ant solutions

update pheromones by reinforcing the best of these solutions

Advantages:

can escape from local optima

inherently parallel

simpler ants
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Pseudo-Boolean Optimization MMAS with iteration-best update

Iteration-Best vs. Comma Strategies

Jägersküpper and Storch, 2007

(1,λ) EA: λ ≥ c log n necessary, even for OneMax.

If λ ≤ c ′ log n then (1,λ) EA needs exponential time.

Reason: (1,λ) EA moves away from optimum if close and λ too small.

Behavior too chaotic to allow for hill climbing!
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Pseudo-Boolean Optimization MMAS with iteration-best update

Iteration-Best on OneMax

Slow pheromone adaptation effectively eliminates chaotic behavior.

Theorem

If ρ ≤ 1/(cn1/2 log n)) for a sufficiently large constant c > 0 and ρ ≥ 1/poly(n)
then 2-MMASib optimizes OneMax in expected time O(

√
n/ρ).

For ρ = 1/(cn1/2 log n) the time bound is O(n log n).

Two ants are enough!
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Pseudo-Boolean Optimization MMAS with iteration-best update

Proof Ideas

“Local” drift for pheromone on each bit i :

E(p′i − pi | pi ) ≥ ρ · pi (1− pi ) ·
1

11


∑

j 6=i

pj(1− pj)



−1/2

.

0.0 pheromone pi
1− 1

n
1
n

drift E(p′i − pi | pi )

1/3

“Local” drift implies “global” drift for sum of pheromones.
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Pseudo-Boolean Optimization MMAS with iteration-best update

Lower Bound

λ/ρ small ⇒ chance of “Landslide sequence”: pheromones go to 1/n.

0.0 pheromone pi
1− 1

n
1
n

drift E(p′i − pi | pi )

Theorem

Choosing λ/ρ ≤ (ln n)/244, the expected optimization time of λ-MMASib on a
function with unique optimum is 2Ω(nε) for some constant ε > 0 with
overwhelming probability.
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Shortest Paths Single-Destination Shortest Paths

ACO System for Single-Destination Shortest Path Problem

1

2

3 4

51

2

3 4

5

1→3→4→5 2→5

3→4→5
4→5

5

Let w(p) =

{∑
e∈p w(e) if p ends in n

∞ otherwise.

Ant System for Single-Destination Shortest Path Problem

initialize pheromones τ and best-so-far paths p∗1 , . . . , p
∗
n

for u = 1 to n do in parallel

let ant x (u) construct a simple path pu from u to n w. r. t. τ
if w(pu) ≤ w(p∗

u ) then p∗
u ← pu

update pheromones on edges (u, ·) w. r. t. p∗
u

repeat
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Shortest Paths Single-Destination Shortest Paths
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Details of Pheromone Update

Initialization

pheromones τ((u, v)) = 1/ deg(u) for all (u, v) ∈ E

and best-so-far paths p∗u = () for all u ∈ V

Pheromone Update

Update τ : E → R+
0 according to:

τ(e = (u, v))←
{

min{(1− ρ) · τ(e) + ρ, τmax} e ∈ p∗u
max{(1− ρ) · τ(e), τmin} e /∈ p∗u

where 0 < ρ < 1 evaporation rate and 0 ≤ τmin ≤ τmax bounds for pheromones

Assume τmin + τmax = 1, τmin ≤ 1/∆, and τmin, ρ ≥ 1/poly(n).
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Lemma

1 ≤
∑

e=(u,·)∈E

τ(e) ≤ 1 + deg(u) · τmin ≤ 2.

uv u

v

Corollary

For every edge e = (u, v)

1

2
· τ(e) ≤ Prob

(
ant x (u) chooses edge e

)
≤ τ(e).
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First Upper Bound

Define

∆ := ∆(G ): maximum out-degree of any vertex

` := `(G ): maximum number of edges on any shortest path

Theorem

Consider a directed graph G with positive weights.
If τmin ≤ 1/(∆`), the expected number of iterations is

O(n/τmin + n log(1/τmin)/ρ), which for τmin = 1/(∆`) simplifies to

O(n∆`+ n log(∆`)/ρ).

Main proof idea: shortest paths propagate through the graph.
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Proof (following Attiratanasunthron and Fakcharoenphol)

some notions:

edge e is correct if it belongs to a shortest path to n
vertex u is optimized if x (u) has found a shortest path from u to n
vertex u is processed if u is optimized and the pheromone on every incorrect
outgoing edge is τmin

v nv

τ(e)/2 ≥ τmin/2 (1−∆τmin)`−1 ≥
(
1− 1

`

)`−1 ≥ 1/e

expected time until v is optimized at most 2e/τmin.

v becomes processed after further ln(τmax/τmin)/ρ iterations.

consider vertices ordered w. r. t. increasing shortest path distance:
n · ((2e/τmin) + ln(τmax/τmin)/ρ) = O(n/τmin + n log(τmin/τmax)/ρ)
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Theorem

Let `∗ := max{`, ln n}. Consider a directed graph G with positive weights where
all shortest paths are unique. If τmin ≤ 1/(∆`), the expected number of iterations
is w. h. p. (i. e. 1− n−c for some constant c > 0)

O(`∗/τmin + `/ρ), which for τmin = 1/(∆`) simplifies to

O(∆``∗ + `/ρ).

Main idea: number of iterations for path with Ω(log n) edges is sharply
concentrated around its expectation [Doerr et. al, CEC 2007]

v nv

⇒ independent coin tosses with success probability τmin/(4e).
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Is the Upper Bound Tight?

1 2 3 4 5 6 n
1 1 1 1 1 1

n n n n n

1 2 3 4 5 6 n

1 2 3 4 5 6 n

Expected time O(`/τmin + `/ρ) and Ω
(
`/τmin + `

ρ log(1/ρ)

)

#wrong vertices decreases on average by O(ρ log(1/ρ)).

expected time for decrease of Ω(`) ⇒ Ω
(

`
ρ log(1/ρ)

)
.

After pheromone adaptation still Ω(`) wrong vertices left

#wrong vertices decreases on average by O(τmin)

expected time for decrease of Ω(`) ⇒ Ω
(

`
τmin

)
.
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All-Pairs Shortest Path Problem

Use distinct pheromone function τv : E → R+
0 for each destination v :

1 2

3

1

11

1

1 2

3

1

11

1

1 2

3

1

11

1

1 2

3

1

11

1
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A Simple Interaction Mechanism

Path construction with interaction

For each ant x (u,v)

with prob. 1/2

use τv to travel from u to v

with prob. 1/2

choose an intermediate destination w ∈ V uniformly at random
uses τw to travel from u to w
uses τv to travel from w to v
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Shortest Paths All-Pairs Shortest Paths

Speed-up by Interaction

Theorem

If τmin = 1/(∆`) and ρ ≤ 1/(23∆ log n) the number of iterations using interaction
w. h. p. is O(n log n + log(`) log(∆`)/ρ).

Possible improvement: O
(
n3
)
→ O

(
n log3 n

)

(with proper ρ and ∆, ` = Ω(n))

Number of function evaluations better than GA by Doerr, Happ, and Klein (2008)
but slightly worse than more tailored GA by Doerr, Johannsen, Kötzing,
Neumann, and Theile (2010).
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Sketch of Proof

ρ ≤ 1/(23∆ log n)

→ within Θ(1/ρ) = Ω(∆ log n) iterations almost uniform search
→ all shortest paths with 1 edge found with high probability

Divide run into phases 1, . . . , α :=
⌈

log3/2 `
⌉

Phase i ends when all shortest paths with ≤ (3/2)i edges processed

after Phase i the probability of finding a shortest path with

(3/2)i < ` ≤ (3/2)i+1 edges between fixed vertices at least (3/2)i

6en :

1/2: ant decides to choose intermediate destination
(`/3)/n: intermediate destination on middle third of shortest path
1/e: ant follows shortest paths

w. h. p. Phase i + 1 takes at most 6en
(3/2)i ln(2αn3) iterations.

expected #iterations (including time for pheromone adaptation):∑α
i=1

(
6en ln(2αn3)

(3/2)i + ln(∆`)
ρ

)
= O(n log n) ·∑α

i=1
1

(3/2)i + α ln(∆`)
ρ

Note: slow adaptation helps!
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Stochastic Shortest Paths

Directed acyclic graph G = (V ,E ,w) with non-negative weights
Family (η(e))e∈E of nonnegative random variables

Noise on edge e: η(e) · w(e).

For a path p = (e1, . . . , e`)

w(p) :=
∑`

i=1 w(ei ) is the real length of p.

w̃(p) :=
∑`

i=1(1 + η(ei )) · w(ei ) is the noisy length of p.

Goal

Find or approximate real shortest paths despite noise.
α-approximation: all real paths lengths within α of optimum.

Remarks

As η is nonnegative, w(p) ≤ w̃(p).

Noise is independent throughout iterations.

No re-evaluation of stored best-so-far paths.
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Results for Arbitrary Noise

Maximum noise ηmax := max
e∈E

E(η(e))

Maximum weighted noise w̃max := max
e∈E

E(η(e)) · w(e)

General bounds for arbitrary noise (Horoba and Sudholt, 2010, extended)

In expected time O((` log n)/τmin + `(log n)/ρ) MMASSDSP finds

multiplicative error: a (1 + c · ηmax)`-approximation (c > 1 constant),

additive error: a solution with additive error O(`2 · w̃max), and

global optimum: a 1-approximation if every non-optimal path from each
vertex v has real length at least (1+c ·E(η(optv )))·optv .

Example where additive error is Ω(` · w̃max) is necessary.

Open problem

Additive error: close the gap between O(`2 · w̃max) and Ω(` · w̃max).
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Ants Become Risk-Seeking

Every edge has independent noise ∼ Γ(k, θ).

1 1 1 1 1

(1 + ε) · 5

Ant tends to store path with high variance as best-so-far path.

Lemma

With probability 1− exp(−Ω(
√

n)) after n/(6τmin) +
√

n ln(1/τmin)/ρ iterations

1 the ant’s best-so-far path starts with the upper edge,

2 the pheromone on the first lower edge is τmin, and

3 probability of changing best-so-far path is exp(−Ω(n)).
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Lower Bound for Independent Noise

u1 u2 u3 u4
u5

v0
v1 v2 v3 v4 v5

1 1 1 1 1 1 1 1 1

W0 W1 W2

(1 + ε) · 5

With probability 1− exp(−Ω(n/log n)) MMASSDSP does not find a
2-approximation on the left part in time n/(6τmin) +

√
n ln(1/τmin)/ρ.

Theorem

Let k = o(log n), kθ ≤ d for some constant d > e, and 1/poly(n) ≤ τmin, ρ ≤ 1/2.

There is a graph where with probability 1− exp(−Ω(
√

n/ log n)) MMASSDSP does
not achieve an approximation ratio better than (1 + kθ/d) within the first ecn

iterations, c > 0 a small constant.
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MST

Broder’s Algorithm

Problem: Minimum Spanning Trees

Consider the input graph itself as construction graph.

Spanning tree can be chosen uniformly at random using
random walk algorithms (e. g. Broder, 1989).

Reward chosen edges ⇒ next solution will be
similar to constructed one
But: local improvements are possible
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Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m} (start vertex 0)
and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

For a given path v1, . . . , vk select the next
edge from its neighborhood
N(v1, . . . , vk) := (E \ {v1, . . . , vk}) \ {e ∈ E |
(V , {v1, . . . , vk , e}) contains a cycle}
(problem-specific aspect of ACO).Reward: all
edges, that point to visited vertices
(neglect order of chosen edges)
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MST

Algorithm

1-ANT: (following Neumann/Witt, 2010)

two pheromone values

value h: if edge has been rewarded

value `: otherwise

heuristic information η, η(e) = 1
w(e) (used before for TSP)

Let vk the current vertex and Nvk be its neighborhood.

Prob(to choose neighbor y of vk) =
[τ(vk ,y)]α·[η(vk ,y)]β∑

y∈N(vk )[τ(vk ,y)]α·[η(vk ,y)]β

with α, β ≥ 0.

Consider special cases where either β = 0 or α = 0.

Dirk Sudholt (University of Birmingham) Theory of Swarm Intelligence 69 / 107

1400



MST

Results for Pheromone Updates

Case α = 1, β = 0: proportional influence of pheromone values

Theorem (Broder-based construction graph)

Choosing h/` = n3, the expected time until the 1-ANT with the Broder-based
construction graph has found an MST is O(n6(log n + log wmax)).

Theorem (Component-based construction graph)

Choosing h/` = (m − n + 1) log n, the expected time until the 1-ANT with the
component-based construction graph has found an MST is
O(mn(log n + log wmax)).

Better than (1+1) EA!
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Broder Construction Graph: Heuristic Information

Example graph G∗ with n = 4k + 1 vertices.

k triangles of weight profile (1, 1, 2)

two paths of length k with exponentially increasing weights.

1 2

1

2
1

1

2

1

1

1
2

4

1
2

4

2
k

2k

k triangles





Theorem (Broder-based construction graph)

Let α = 0 and β be arbitrary, then the probability that the 1-ANT using the
Broder construction procedure does not find an MST in polynomial time with
probability 1− 2−Ω(n).
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Component-based Construction Graph/Heuristic
Information

Theorem (Component-based construction graph)

Choosing α = 0 and β ≥ 6wmax log n, the expected time of the 1-ANT with the
component-based construction graph to find an MST is constant.

Proof Idea

Choose edges as Kruskal’s algorithm.

Calculation shows: probability of choosing a lightest edge is at least 1− 1/n.

n − 1 steps =⇒ probability for an MST is Ω(1).
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Traveling Salesman Problem

Traveling Salesman Problem (TSP)

2 7

15
3

1
Input: weighted complete graph
G = (V ,E ,w) with w : E → R.

Goal: Find Hamiltonian cycle of minimum
weight.
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TSP

MMAS for the TSP

Best-so-far pheromone update with τmin := 1/n2 and τmax := 1− 1/n.

Initialization: same pheromone on all edges.

“Ordered” tour construction

Append a feasible edge chosen with probability
proportional to pheromones.

“Arbitrary” tour construction

Add an edge chosen with probability proportional to
pheromones as long as no cycle is closed or a vertex
get degree at least 3.
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Previous Work

Theorem [Yuren Zhou 2009]

MMAS* needs O(n6) iterations in expectation to find optimal solution on the
following example:

1
1

1

1

1
1

expensive
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TSP

Missing Locality

Pheromones saturated:
τ(e) = τmax for e ∈ x∗ τ(e) = τmin for e /∈ x∗

Lemma

MMAS* with saturated pheromones exchanges Ω(log(n)) edges in expectation.

Length of unseen part roughly halves each time.
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TSP

Locality

Lemma

For any constant k: MMAS∗Arb with saturated pheromones creates exactly k new
edges with probability Θ(1).

Theorem

MMAS∗Arb needs O(n3 log n) iterations in expectation to find optimal solution on
Zhou’s example.

Probability of particular 2-Opt step (for constant ρ):
MMAS∗Ord: Θ(1/n3) MMAS∗Arb: Θ(1/n2)
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TSP

Average Case Analysis

Assume that n points placed independently, uniformly at random in the unit
hypercube [0, 1]d .

Theorem [Englert, Röglin, Vöcking 2007]

2-Opt finds after O(n4+1/3 · log n) iterations with probability 1− o(1) a solution
with approximation ratio O(1).

Theorem

For ρ = 1, MMAS∗Arb finds after O(n6+2/3) iterations with probability 1− o(1) a
solution with approximation ratio O(1).

Theorem

For ρ = 1, MMAS∗Ord finds after O(n7+2/3) iterations with probability 1− o(1) a
solution with approximation ratio O(1).
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TSP

Smoothed Analysis

Smoothed Analysis

Each point i ∈ {1, . . . , n} is chosen independently according to a probability
density fi : [0, 1]d → [0, φ].

1/
√
φ

1/
√
φ

2-Opt:
O( d
√
φ)-approximation in

O(n4+1/3 · log(nφ) · φ8/3) steps

MMAS∗Ord: O( d
√
φ)-approximation

in O(n7+2/3 · φ3) steps

MMAS∗Arb: O( d
√
φ)-approximation

in O(n6+2/3 · φ3) steps

Dirk Sudholt (University of Birmingham) Theory of Swarm Intelligence 80 / 107

1403



TSP

TSP: Conclusions and Open Questions

Summary

MMAS∗Arb has higher locality than MMAS∗Ord

Random and perturbed instances are easy for MMAS* if pheromone update
is high.

Open Questions

Better analysis of random instances for smaller ρ.

Theoretical analysis of other ACO heuristics.

Instances on which ACO is better than 2-Opt.
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PSO

Particle Swarm Optimization

Particle Swarm Optimization

Bio-inspired optimization principle developed by Kennedy and Eberhart
(1995).

Mostly applied in continuous spaces.

Swarm of particles, each moving with its own velocity.

Velocity is updated according to

own best position and
position of the best individual in its neighborhood.

Here: neighborhood = the whole swarm.

Behavior derived from social-psychology theory.
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PSO

Particle Swarm Optimization

0010

1100

1101

1010

1010

x∗

Binary PSO (Kennedy und Eberhart, 1997)
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Binary PSO

Binary PSO

Developed by Kennedy and Eberhart (1997).

Goal: optimize pseudo-Boolean function f : {0, 1}n → R.

Swarm contains µ particles.

Record global best particle x∗.

The i-th particle maintains triplet
1 current position x (i) ∈ {0, 1}n,
2 own best position x∗(i) ∈ {0, 1}n, and
3 a real-valued velocity v (i) ∈ R.

What is the meaning of velocity in binary spaces?
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PSO Binary PSO

Creating New Positions

Probabilistic construction using velocity v and sigmoid function s(v):

Prob(xj = 1) = s(vj) = 1
1+e−vj

1.0

0.0
0-4 +4

Restrict velocities to vj ∈ [−vmax,+vmax].

Common practice: vmax = 4.

Much better: vmax := ln(n − 1):

1

n
≤ Prob(xj = 1) ≤ 1− 1

n
.
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PSO Binary PSO

Updating Velocities

Update current velocity vector according to

cognitive component → towards own best: x∗(i) − x (i) and

social component → towards global best: x∗ − x (i).

Learning rates c1, c2 affect weights for the two components.

Random scalars r1 ∈ U[0, c1], r2 ∈ U[0, c2] chosen anew in each generation:

v (i) = v (i) + r1(x∗(i) − x (i)) + r2(x∗ − x (i))
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PSO Binary PSO

The Whole Algorithm

Algorithm (Binary PSO)

1 Initialize velocities with 0n and all solutions with ⊥.

2 Choose r1 ∈ U[0, c1] and r2 ∈ U[0, c2].

3 For j := 1 to µ and i := 1 to n do

Set x
(j)
i := 1 with probability s(v

(j)
i ), else x

(j)
i := 0.

4 For j := 1 to µ do
If f (x (j)) > f (x∗(j)) then x∗(j) := x (j).
If f (x∗(j)) > f (x∗) then x∗ := x∗(j).

5 For j := 1 to µ do
Set v (j) := v (j) + r1(x∗(j) − x (j)) + r2(x∗ − x (j)).
Restrict each component of v (j) to [−vmax, vmax].

6 Goto 2.
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PSO Binary PSO

The 1-PSO

Special case: 1-PSO with µ = 1, c1 = 0, and c2 = 2 (Sudholt and Witt, 2010).

Algorithm (1-PSO)

1 Initialize v = 0n and x∗ = ⊥.

2 Choose r ∈ U[0, 2].

3 For i := 1 to n do
Set xi := 1 with probability s(vi ), else xi := 0.

4 If f (x) > f (x∗) then x∗ := x.

5 Set v := v + r(x∗ − x).
Restrict each component of v to [−vmax, vmax].

6 Goto 2.
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PSO Binary PSO

Understanding Velocities

1-PSO: update increases velocity by r(x∗ − x).

Strange: velocity vi is changed only if xi 6= x∗i .

Let x∗i = 1, then probability to increase vi is

1− s(vi ) = s(−vi ) =
1

1 + evi
.

⇒ at least 1/2 for vi < 0, but decreases rapidly with growing vi .
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PSO Binary PSO

Velocity Freezing

1-PSO and “social” PSO with c1 = 0, c2 > 0:

Particle with best-so-far solution

1
n

1− 1
n

x∗ 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0

Lemma

Expected freezing time to vmax or −vmax is O(n) for single bits
and O(n log n) for n or µn bits if µ = poly(n).
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PSO Binary PSO

Fitness-Level Method for Binary PSO

Let si be the minimum probability of the (1+1) EA to increase the fitness from
i-th fitness value.

Upper bound for the (1+1) EA

m−1∑

i=0

1

si

Upper bound for the 1-PSO

O(m · n log n) +
m−1∑

i=0

1

si

Upper bound for generations of Binary PSO with c1 := 0, c2 := 2

O

(
m · n log n +

1

µ

m−1∑

i=0

1

si

)
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PSO Binary PSO

The 1-PSO on OneMax

Fitness level arguments only yield O(n2 log n) for the 1-PSO on OneMax.

More careful inspection of the velocities: average adaptation time of 384 ln n is
sufficient.

Theorem (Sudholt and Witt, 2010)

The expected optimization time of the 1-PSO on OneMax is O(n log n).

Proof uses layering argument and amortized analysis.

Experiments: 1-PSO 15% slower than (1+1) EA on OneMax.
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PSO Continuous Spaces
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PSO Continuous Spaces

Continuous PSO

Search space: (bounded subspace of) Rn.

Objective function: f : Rn → R.

Particles represent positions x (i) in this space.

Particles fly at certain velocity: x (i) := x (i) + v (i).

Velocity update with inertia weight ω:

v (i) = ωv (i) + r1(x∗(i) − x (i)) + r2(x∗ − x (i))
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PSO Continuous Spaces

Convergence of PSO

Swarm can collapse to points or other low-dimensional subspaces.

Convergence results for standard PSO, ω < 1 (Jiang, Luo, and Yang, 2007)

PSO converges . . . somewhere.

Extensions of standard PSO

Bare-bones PSO (Kennedy, 2003)

PSO with mutation (several variants)

PSO using gradient information (several variants)

Guaranteed Convergence PSO (GCPSO) (van den Bergh and Engelbrecht,
2002)
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PSO Continuous Spaces

Guaranteed Convergence PSO

Van den Bergh and Engelbrecht, 2002:

Make a cube mutation of a particle’s position by adding p ∈ U[−`, `]n.

Adapt “step size” ` in the course of the run by doubling or halving it,
depending on the number of successes.

Possible step size adaptation (Witt, 2009)

After an observation phase consisting of n steps has elapsed, double ` if the total
number of successes was at least n/5 in the phase and halve it otherwise. Then
start a new phase.

−→ 1/5-rule known from evolution strategies!

Dirk Sudholt (University of Birmingham) Theory of Swarm Intelligence 97 / 107

PSO Continuous Spaces

Special Case of GCPSO

GCPSO with one particle (for minimization):

GCPSO1

Repeat:

x := x∗ + p, p ∈ U[−`, `]n.

if f (x) < f (x∗) then x∗ := x .

Update `.

Basically a (1+1) ES with cube mutation.

Can be analyzed like classical (1+1) EA (Jägersküpper, 2007)
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PSO Continuous Spaces

Results

Sphere(x) := ||x || = x2
1 + x2

2 + · · ·+ x2
n

Theorem (Witt, 2009)

Consider the GCPSO1 on Sphere. If ` = Θ(||x∗||/n) for the initial solution x∗,
the runtime until the distance to the optimum is no more than ε||x∗|| is

O(n log(1/ε)) with probability at least 1− 2−Ω(n) provided that 2−n
O(1) ≤ ε ≤ 1.

Same result as for (1+1) ES using Gaussian mutations in Jägersküpper, 2007.

Remarks

Analysis of cube mutations is easier than that of Gaussian mutations for
Sphere.

Runtime result for GCPSO1 is asymptotically optimal for many black-box
heuristics (Jägersküpper, 2007a).

Populations do not help for Sphere (Jägersküpper and Witt, 2005).
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Conclusions

Conclusions

Summary

Insight into probabilistic models underlying ACO and PSO

How design choices and parameters affect (bounds on) running times

How simple ACO algorithms optimize unimodal functions and plateaus

Results for ACO in combinatorial optimization

First analyses of basic PSO algorithms in discrete and continuous spaces

Future Work

A unified theory of randomized search heuristics?

More results on multimodal problems

When and how diversity and slow adaptation help

ACO: average-case results, possibly with heuristic information

PSO: swarm dynamics and neighborhood topologies
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T. Stützle and H. H. Hoos.

MAX-MIN ant system.
Journal of Future Generation Computer Systems, 16:889–914, 2000.

D. Sudholt.

Using Markov-chain mixing time estimates for the analysis of ant colony optimization.
In Proceedings of the eleventh workshop on Foundations of Genetic Algorithms (FOGA 2011). ACM Press, 2011, to appear.

D. Sudholt and C. Witt.

Runtime analysis of a binary particle swarm optimizer.
Theoretical Computer Science, 411(21):2084–2100, 2010.

C. Witt.

Rigorous runtime analysis of swarm intelligence algorithms - an overview.
In Swarm Intelligence for Multi-objective Problems in Data Mining, number 242 in Studies in Computational Intelligence (SCI), pages 157–177.
Springer, 2009.

Dirk Sudholt (University of Birmingham) Theory of Swarm Intelligence 105 / 107

Conclusions

Selected Literature V

C. Witt.

Why standard particle swarm optimisers elude a theoretical runtime analysis.
In Foundations of Genetic Algorithms 10 (FOGA ’09), pages 13–20. ACM Press, 2009.

C. Witt.

Theory of particle swarm optimization.
In Theory of Randomized Search Heuristics–Foundations and Recent Developments. World Scientific Publishing, 2011.

Y. Zhou.

Runtime analysis of an ant colony optimization algorithm for TSP instances.
IEEE Transactions on Evolutionary Computation, 13(5):1083–1092, 2009.

Dirk Sudholt (University of Birmingham) Theory of Swarm Intelligence 106 / 107

Conclusions

Thank you!

Questions?
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