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ABSTRACT
Many Genetic Algorithm (GA) problems have noisy fitness
functions. In this paper, we describe a mathematical model
of the noise distribution after selection and then show how
this model of the noise distribution can be used to model
the real, underlying selection intensity of the GA popula-
tion, which promises to give us a better way to model GA
convergence in the presence of noise.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing, Statistical

General Terms
Algorithms, Theory

1. INTRODUCTION
Many Genetic Algorithm (GA) problems have fitness func-

tions with significant noise, and a body of research has been
built that shows that noise strongly affects the behavior of
a GAs. In particular, it has been empirically shown that in
the presence of too much noise, GA search becomes essen-
tially random search and ceases to be productive. Also, it
has been shown that many design parameters such as pop-
ulation size, generational versus steady state, and elitism
must be chosen differently in the presence of noise. [1] and
[2].

Given a noisy population of a GA and a selection cut-
off point, we give a model that allows us to estimate the
real (without noise) distribution of the selected population.
This distribution has the properties that we would expected–
when noise is very large, it is essentially identical to the
unselected population. But, when noise is very small, the
distribution of the selected population forms a noticeable
selection differential and a corresponding selection in-
tensity.
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These two values have been shown in the past to have
strong and predictable relationships to the performance of
a GA. Our model promises a better mechanism for under-
standing and predicting the convergence behavior of GAs in
the presence of noise.

2. FITNESS AFTER SELECTION
We assume that the fitness of an instance alpha of a GA

population has both a noise component and a real fitness
component. We make the assumption that both the noise
and the real fitness values can be modeled as drawing from
(different) normal distributions. So, our fitness is:

F̂ (α) = F (α) + X (1)

F (α) is the real, or underlying fitness of population mem-
ber α, and X is a random variable representing the noise.
F̂ (α) is the combined noise that is visible to the GA.

Let ΩF (x) and ΩX (x) denote the probability distributions
of the real fitness and the noise, respectively. We make the
assumption that both ΩF (x) and ΩX (x) are normal.

Since ΩF (x) is a normal distribution, we can write:

ΩF (x) =
1√

2πσ2
F

e
− (x−MF )2

2σ2
F (2)

Let ΩF:sel(x) and ΩX :sel(x) denote the distributions after
selection. MF:sel is the average of the real fitness distribution
after selection and MF is the real fitness distribution before
selection. σ2

f and σ2
X are the variances of real fitness and

noise, respectively. Because we are working with addition of
probability distributions:

ΩF̂ (x) =
ΩF (x) + ΩX (x)

2
(3)

In terms of the prior distributions, the distribution of the
real fitness after selection is:

ΩF:sel(x) =

ΩF (x)
∞∫

c−x

ΩX (t)dt

Z (4)

where Z is a normalizing constant and c is the selection
cut point, the fitness value of the worst member of the se-
lected population.
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Z =

q=∞∫
q=−∞

[ΩF (q)

∞∫
c−q

ΩX (t)dt]dq (5)

Thus, the expected mean real fitness (without noise) of
the selected population is:

MF :Sel =

∞∫
−∞

xΩF:sel(x)dx (6)

Using Equation 6 to model MF :Sel requires that we know
the average fitness of our population after before and after
selection, which is usually trivial. Additionally, we need es-
timates for the variance of the noise, σX , and the variance of
the real underlying fitness, σF . We note that it is possible to
estimate these last two using represententive oversampling
of some of the members of the population and then using
the fact that the variances form a pythagorean triplet:

σ2
F̂ = σ2

F + σ2
X (7)

2.1 Selection Differential and Intensity
Haldane observed in 1932 that the important metrics for

analyzing fitness improvement in a breeding program are
selection differential, S, and selection intensity, I. [3]
Mühlenbein demonstrated their applicability to GAs in [4].

Selection differential is the difference between the mean
fitness of the population before and after selection:

S = MF:sel −MF (8)

Selection intensity is the ratio of selection differential and
the standard deviation of the distribution:

I =
S

σF
(9)

What Haldane noted in breeding programs is that the
rate of change of fitness between generations in a breeding
program was linearly dependent on I. Haldane also noted
that the rate of change was dependent on another factor,
which he called heritability, which captured the inherent
difficulty of improving fitness over the existing population.

Heritability is not constant over the entire run of a GA,
since it is dependent on position of a population in the fit-
ness landscape. However, for a given fitness landscape and a
given population, Haldane showed that the rate of improve-
ment was linear on I for animal breeding programs, and
research since then has indicated that this is true for GAs
as well. [4].

Using Equation 6 to compute the average fitness of the
selected population, we now have a way to compute the un-
derlying selection intensity without noise.

In Table 2.1, we give some examples of computing selec-
tion differential using Equation 6 for various cut points and
amounts of noise. Notice that the selection differential, and
correspondingly the selection intensity vary tremendously
based on the amount of noise.

Our technique promises to give us a better way to model
techniques such as dynamic oversampling. Since we can
model the real selection intensity, we should be able to choose

σX
0.1 0.5 1 2 10

c = −0.5 0.51 0.48 0.42 0.30 0.076
c = 0 0.79 0.71 0.56 0.36 0.080
c = 0.5 1.1 0.99 0.73 0.42 0.083

Table 1: This table gives the selection differential
for various levels of noise σX and cut values c. It is
assumed that σF = 1, therefore I = S. S = MF :sel −
MF . Larger noise decreases the selection differential,
reducing the rate of fitness improvement.

oversampling techniques that effectively balance selection in-
tensity and evaluation costs.

3. CONCLUSION
In this paper, we have described a model for estimating

the real (noiseless) fitness distribution of a GA population
after selection. Even though the initial distributions are
assumed to be normal, the selection process gives it a much
different shape, for which our Equation 6 gives us a model.

The average of the selected fitness minus the original fit-
ness of the population is the selection differential, and is
the value that makes a GA different from a random walk.
Our model gives us a way to describe this differential in the
presence of noise.
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