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ABSTRACT 
The Multiset Genetic Algorithm (MuGA) was adapted to real 
coded problems, tested in benchmark functions, and compared to 
competitive algorithms. Genetic operators were adapted to take 
into account the multiset representation of the population, which 
is the main distinctive feature and advantage of MuGA. The new 
operators extend existing ones, incorporating the influence of the 
number of copies each multi-individual has. Preliminary results 
obtained, without particular tuning efforts, position MuGA close 
to the best results obtained by other approaches. Future work will 
improve limitations found in maintaining a high genetic diversity. 

Categories and Subject Descriptors 
I.2.8 [Artif cial Intelligence]: Problem Solving, Control, Methods 
and Search. 
D.2.2 [Design Tools and Techniques]: Evolutionary prototyping. 

General Terms 
Algorithms, Performance,  Experimentation. 

Keywords 
Multiset, genetic algorithms, operators, real coding problems. 

1. INTRODUCTION 
MuGA is an approach designed towards producing a good balance 
between exploration and exploitation in evolutionary algorithms 
(EA), as well as a resource rationalization. It is described in more 
detail in section 2, but its most distinctive feature is to use 
multiset representation for populations [1]. 

Previous work on MuGA has concentrated on showing the 
benefits of simply replacing the conventional representation of 
population as a collection by the multiset representation [2]. 
However, using multisets opens a wide domain of new operators 
that only make sense with such a population representation. This 
paper presents the first initiative into the exploration of new 
operators specific for multiset based populations in real coded 
optimization problems. 

2. MULTISETS GENETIC ALGORITHM 
(MUGA) 
A multiset (or multiple membership set) is a collection of objects, 
called elements, which are allowed to repeat. We can define the 
multiset as a set of ordered pairs <copies, element> where copies 

is the cardinality associated to the element. MuGA (Figure 1) is a 
genetic algorithm in which populations are represented by 
multisets, called MultiPopulations (MP) and individuals 
represented by pairs <copies, genotype> called MultiIndividuals 
(MI). Introduction and removal of repeated individuals in a MP is 
done by incrementing and decrementing the number of copies of 
corresponding MI. By design, the algorithm, Figure 1, preserves 
the genetic diversity by maintaining constant the number of MI in 
the parents population, MP0. Next we describe the new operators 
adapted to capitalize on the multiset representation. 

 
Figure 1- Operators and MultiPopulations in MuGA 

Multiset Selection 
Tournament selection is widely used in EA and presents unique 
features that allow an effective control of the selection pressure. 
The operator is not dependent on the range of values of the fitness 
function and avoids fitness scaling. These properties make this 
operator the right choice for MuGA selection. The selection of 
individuals for the tournament is done with uniform distribution 
over the elements of the population. The number of copies of an 
individual increases its probability of selection. 

Multiset Reproduction 
The main drawback of EA is the loss of genetic diversity by the 
repeated application of genetic operators over the population. 
Thus, MuGA employs a crossover operator that introduces genetic 
diversity in the population, using the number of copies of the MI 
to expand the range where offspring are created. The number of 
copies of individuals reflects its adaptation, and the higher it is, 
the more the offspring creation region is expanded in that 
direction. The line connecting the two parents is expanded in each 
direction by a factor of the number of copies of the corresponding 
parent. Offspring are selected from the extended line with a 
uniform random distribution. As a consequence, better fit 
individuals (with multiple copies) may generate offspring in wider 
areas, contributing in this way to increase genetic diversity. 
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Multiset Mutation 
The mutation operator uses the number of copies of the MI to 
reduce the range of mutation and better exploit its neighborhood. 
To execute a mutation the MI is expanded to an array of single 
individuals. The index of the array is used to shrink the range 
where genes peek their values. We use a Gaussian function with 
zero mean and standard deviation equal to the domain of the gene 
divided by the index of the array. Highly adapted individuals have 
many copies and therefore its mutants are progressively more 
close to the original MI as the index number increases. Individuals 
with poor fitness contribute with fewer copies and the mutation 
operator does not concentrate so much around them. 

Multiset Replacement 
EA have the ability to explore large regions of the search space 
but are less successful in the exploitation of these promising 
regions. The hybridization with local search algorithms improves 
significantly the results of genetic evolution. In this work we use 
the local search in a novel way: a local search embedded in the 
replacement operator using Nelder-Mead Simplex method (NMS). 
We combine the fresh genetic material of MP3 and the good 
individuals produced by the evolutionary process, MP0, in the 
same simplex, and perform a limited local search. The individuals 
resulting from NMS go to the next generation. 

Multiset Rescaling 
The introduction of repeated elements in the MP causes an 
increase in the number of copies of the corresponding MI and the 
rescaling operator avoids the best individuals getting too many 
copies. In order to control the number of repeated elements, the 
rescaling operator divides the number of copies of each MI by a 
factor. The operator ensures that each MI has at least one copy 
and the total of individuals in MP is not greater than a constant 
defined as the double of the number of MI. Experimental results 
show that this value is a good compromise between selection 
pressure and genetic diversity. 

3. EXPERIMENTAL RESULTS 
To evaluate the performance of MuGA we chose a benchmark 
that poses difficulties and we compare our algorithm to state of 
the art optimizers. In order to maintain computation times within 
reduced values we opted for CEC 2008 benchmark problems of 
the Special Session & Competition on Large Scale Global 
Optimization with 100 variables [3]. This benchmark has seven 
functions with different degrees of difficulty. All except F7 have 
zero as minimum value. F7 is a fractal function without known 
minimum.  

 
Figure 2 – Rank of the CEC 2008 Algorithms and MuGA 

Table 1. Statistics of MuGA results from the CEC 2008 
benchmark functions after 500.000 function evaluations. 

 
Table 1 shows the statistics of 25 runs of MuGA over the 
CEC2008 benchmark functions after 500.000 function 
evaluations. Figure 2 shows the rank of MuGA against the 
algorithms that competed in CEC2008. Overall MuGA is on 
second tier group. It has a robust behavior, patent in the 
consistency and quality of results over all benchmark functions. 
The rank of MuGA is only once below average (F7) and in the 
other functions it is always above that, although slightly. 

4. CONCLUSION  
This paper presents a first approach to real coded function 
optimization with a multiset based evolutionary algorithm, 
incorporating local search. We adapted each operator to the 
multiset representation, in order to take advantage of the number 
of copies in each multi-individual. The number of copies of each 
individual allowed modifications of the genetic operators so that a 
better balance between exploration and exploitation is achieved 
without compromising population stability. 
Real problem optimization is known to need hybrid solutions and 
we have incorporated local search in MuGA in a novel way. The 
Nelder-Mead simplex search used in the replacement operator can 
take profit of a number of individuals higher than the population 
size. This is important to explore the fitness landscape in a wider 
range than using only one population, being it the original of a 
generation or the offspring population. 
This first approach to MuGA in real coded problems was 
configured based on a set of different operators that were chosen 
to match with each other. This choice took into account 
exploration and exploitation capabilities of the operators as well 
as diversity maintenance in the population. Next efforts will be 
directed to identify the causes of limitations of MuGA observed in 
some functions of the used benchmark. 
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F7 1 8 3 2 6 7 4 5

F6 6 8 3 1 7 1 5 4

F5 7 8 5 1 6 1 4 3

F4 3 8 2 1 5 7 6 4

F3 6 8 4 1 5 2 7 3

F2 8 7 3 2 6 5 1 4

F1 7 8 4 1 5 1 5 3
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CEC2008  + MuGA Rank

Statistic F1 F2 F3 F4 F5 F6 F7

Best 2,76E-26 5,27E-01 5,64E+01 8,70E-14 0,00E+00 3,24E-14 -1,49E+03

Median 9,55E-26 6,54E-01 1,06E+02 1,39E-12 1,11E-16 5,73E-14 -1,46E+03

Worst 4,75E-25 8,06E-01 2,20E+02 1,35E-09 1,22E-01 4,17E-12 -1,43E+03

Mean 1,36E-25 6,66E-01 1,20E+02 9,07E-11 1,92E-02 2,43E-13 -1,46E+03

Std 1,22E-25 7,75E-02 4,04E+01 2,70E-10 3,62E-02 8,21E-13 1,47E+01
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