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ABSTRACT

Traditional evolutionary algorithms (EAs) are powerful prob-
lem solvers that have several fixed parameters which require
tuning. An increasing body of evidence suggests that the
optimal values of some, if not all, EA parameters change
during the course of executing an evolutionary run. This
paper investigates the potential benefits of dynamic param-
eters by applying a Meta-EA to evolving optimal dynamic
parameter values for population size, offspring size, n in n-
point crossover, Gaussian mutation’s step size, bit flip muta-
tion’s mutation rate, parent selection tournament size, and
survivor selection tournament size.

Each parameter was optimized both as the only dynamic
parameter, and with all parameters dynamic. The most ef-
fective two parameters when acting independently were also
allowed to optimize in tandem. The results were compared
with a Meta-EA tuned EA using static parameters on the
DTrap, NK, Rastrigin, and Rosenbrock benchmark prob-
lems. Results support that all tested parameters have the
potential to improve solution fitness by changing dynami-
cally, and using multiple dynamic parameters was more ef-
fective than using each independently.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms
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1. INTRODUCTION

The already time consuming process of parameter tun-
ing to receive optimal results in an Evolutionary Algorithm
(EA) increases combinatorially when considering dynami-
cally changing parameter values. A number of efforts have
been made to determine parameter values for each stage of
an EA. Mutation has received the most attention [6], but
work has also been done in population size [1, 2], offspring
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size [4], recombination [3], parent selection [7] and survival
selection [2]. Some work has also been done controlling mul-
tiple parameters at once [5, 8]. In most instances, the focus
of parameter control research has been to remove or reduce
an EA’s dependency on a priori tuning, or on creating algo-
rithms to modify or predict parameter settings, not necessar-
ily to determine optimal settings. In [1], a hand-tuned EA
using a static population size was compared to a Meta-EA
evolved dynamic population size. While the dynamic popu-
lation size obtained significantly better results, the difference
in tuning methods and the usage of generations instead of
evaluations for tuning makes the implications unclear.

2. METHODOLOGY

The following operators were chosen to be made dynamic:
population size, offspring size, n in n-point crossover, Gaus-
sian mutation’s step size, bit flip mutation’s mutation rate,
parent selection tournament size, and survivor selection tour-
nament size. These operators were selected because they use
parameters that allow for straightforward dynamic modifi-
cation and they are commonly used in EAs. Each meta-
individual’s genome represented key parameter values to
use at evenly spaced intervals of evaluations. To determine
the value of a parameter between keys, linear interpolation
was used. By using a small number of keys, the Meta-EA
can achieve a significant decrease in search space complexity
without a significant loss in expressive power. To ensure fair
comparison, a Meta-EA using a single key for each parame-
ter was used to determine the best static configuration and
all non-dynamic parameters employed these values.

The fitness of a meta-individual was determined by the
average final best fitness of the set of EAs using that meta-
individual. To compensate for meta-evolving six different
parameter combinations on four benchmark problems, the
number of Meta-EA runs and evaluations used were low,
and each meta-individual was given 30 runs of an EA using
a maximum of 5,000 evaluations. The DTrap, NK, Rast-
rigin and Rosenbrock benchmark functions were employed
to test the effectiveness of dynamic parameters. They were
chosen to represent the binary separable, binary inseparable,
real-valued separable multimodal, and real-valued insepara-
ble classes of problems, respectively.

Every parameter was tested using both two and five keys,
to allow for experiments with low search space versus high
control. As a higher number of keys can replicate fewer
keys — by using identical key values sequentially — the worst
fitness any number of keys should be able to obtain is equal



to the best value found by a lower number of keys. As such, if
the best dynamic parameter settings received worse results
than static, the reason is due to search space complexity,
because in an exhaustive search dynamic would at least find
a way to mimic static. Additional testing was also performed
using the two best key settings in tandem, as well as using
two keys for every parameter at once.

3. RESULTS & DISCUSSION

The average and standard deviation of the best final fit-
ness found by each configuration on each problem is given
in Table 1. Experiments are labeled using the name of
the parameter made dynamic and the number of keys used,
with Combined referring to the combination of the best two.
Paired T-Tests were used to compare all experiments with
using the best found static configuration. To ensure the
quality of the static configuration, the hand-tuned param-
eters found in [1] were compared with the Meta-EA tuned
parameters found here, showing the Meta-EA’s configura-
tion to receive significantly better results in half as many
evaluations.

On all four problems tested, using a single dynamic pa-
rameter was able to outperform the best found static config-
uration, in many cases to a statistically significant degree.
The exceptions to statistical significance are NK and Rosen-
brock, were the lack of time to converge is likely responsible
for the high standard deviation. Despite the significantly
larger search space, using two parameters together was able
to outperform using either independently on DTrap, Rastri-
gin and Rosenbrock. Furthermore, allowing all parameters
to change dynamically resulted in the best results of all ex-
periments on Rosenbrock.

None of the experiments run resulted in final best meta-
individuals who mimicked simpler dynamic settings. Also,
when using dynamic parameters in tandem, the best key
settings found for each was different than using the param-
eters alone. This implies that the best methods for param-
eter control are highly dynamic and highly interdependent.
Finally, each parameter tested received the best or second
best results on at least one of the problems, meaning that
to achieve best performance, all parameters may need to be
allowed to change dynamically.

4. CONCLUSION & FUTURE WORK

When using a Meta-EA to evolve parameter settings, a
single dynamic parameter was found to be more effective
than using strictly static parameters and all of the tested
dynamic parameters were more effective than static on at
least one problem. Using two dynamic parameters was bet-
ter than using one dynamic parameter on all problems ex-
cept NK, and on Rosenbrock the most effective configuration
allowed all parameters to change dynamically together. The
more a parameter changed, the better fitness it was able to
achieve. The optimal control trends also changed depending
on how other parameters were changing concurrently.

While running a lower number of evaluations should be
indicative of longer runs, experiments using more common
evaluation counts for the EA will allow for more direct in-
terpretation. Since the minimum quality for any dynamic
configuration should be to at least mimic the best less dy-
namic configuration, enough meta-evolution to reach this
point should be performed.
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Keys | Fitness | P-Value
4-Bit Concatenated DTrap, 100 Traps
Combined 0.838 (0.013) 0
Parent Selection 5 0.837 (0.014) 0
Offspring 5 0.831 (0.012) 0
ATl 0.814 (0.008) 0.373
Static 0.813 (0.009) i
NK Landscapes, N=20, K=3
Population 2 0.766 (0.027) 0.325
Mutation Rate 5 0.765 (0.027) 0.383
Combined 0.764 (0.026) 0.464
Static 0.763 (0.024) 1.000
ATl 0.762 (0.026) 1.000
Rastrigin, N=20, A=10
Combined -8.278 (2.487) 0.002
Offspring 5 -8.816 (2.590) 0.011
Survival Selection 5 -9.538 (2.284) 0.063
Static -10.769 (3.590) 1
ATl 13.376 (4.471) 1
Rosenbrock, N=20, A=100
All 31,186 (31.716) | 0.005
Combined 230.435 (56.788) | 0.023
Mutation Step Size 2 | -55.181 (78.896) 0.138
Recombination 2 -63.263 (66.377) 0.217
Static -79.545 (89.301) 1

Table 1: Fitness of dynamic parameters compared
with static

To increase generality of results, problems involving per-
mutation based solutions and real world problems should be
attempted. Further experimentation, including parameters
using more keys, can determine if there are any common
dynamic parameter trends that can be used as the basis for
control strategies.
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