
Raising Mutation Rate
in the Context of Hybrid Genetic Algorithms

Yu-Min Son
School of Computer Science & Engineering

Seoul National University
599 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
eclipse726@snu.ac.kr

Byung-Ro Moon
School of Computer Science & Engineering

Seoul National University
599 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
moon@snu.ac.kr

ABSTRACT
A typical genetic algorithm uses a constant mutation rate
or reduces the mutation rate over the generation. Gener-
ally, the degree of perturbation by crossover operators gets
weaker as the generations go by. Hybrid GAs, which use a
local optimization heuristic, strongly drive the offspring to
a chromosome similar to or the same as one of the parents.
We suspect that one needs to raise the degree of mutation
in the late stages of a hybrid GA, contrary to the practice.
The experimental results supported our suspection, by show-
ing performance improvement over two philosophically rep-
resentative mutations: the traditional fixed-rate mutation
and the non-uniform mutation. We used two representative
NP-hard problems in the experiments: the graph bisection
problem and the traveling salesman problem.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization; G.2.2 [Graph
Theory]: Graph algorithms

General Terms
Algorithms, Experimentation

Keywords
Hybrid genetic algorithm, mutation rate, perturbation, con-
vergence of population, traveling salesman problem, graph
bisection problem

1. INTRODUCTION
In Genetic Algorithms (GAs), mutation is one of the rep-

resentative operators and numerous studies have attempted
to find and explore the desirable mutation rates. All these
studies, however, were for classical GAs that do not combine
a local search algorithm. Without a local search algorithm,
it is desirable not to perturb high-quality solutions, which
mostly appear in the late stages of a GA, for fine-tuning
around local optima.

On the Contrary, when it comes to hybrid GAs, we sus-
pect that higher mutation rates are appropriate in the late
stages. In a traditional GA, keeping the characteristics of
high-quality parents is crucial. In a hybrid GA, however,

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

a weak perturbation makes offspring return to one of the
parents with a high probability, by the power of local search
engines. Thus a hybrid GA seems to need a higher degree of
perturbation not to be overwhelmed by the power of local
optimization.

We suggest a new direction that increases the mutation
rate in accordance with the population convergence in the
context of hybrid GAs. We took experiments on two NP-
hard problems: the traveling salesman problem and the
graph bisection problem. Overall, the new mutation strate-
gies showed improvement over the fixed-rate mutation and
the non-uniform mutation within 5% statistical risk. Note
that the fixed-rate mutation and the non-uniform mutation
are two philosophically representative mutations in the com-
munity of GA.

2. MUTATION STRATEGIES FOR HYBRID
GENETIC ALGORITHMS

We compare three mutation strategies: traditional fixed-
rate mutation, non-uniform mutation, and rate-increasing
mutation. The former two are two representative mutations
in philosophy in the GA community. The rate-increasing
mutation is the new one that we propose.

Fixed-rate Mutation
This uses a fixed mutation rate all through the generations.
We apply the rate 0.005 to this type of mutation.

Non-Uniform Mutation
This decreases the degree of mutation rate over the gener-
ations, which was suggested by Michalewicz [1]. So we use
the formula and give new meaning to some parameters to be
better suited to TSP and graph bisection problem as follows:

y = y0 · (1− r
(1−t/T )b

2 )

where y is the current mutation rate, y0 is the initial mu-
tation rate, r2 is a random number on the range [0,1), t and
T are the current generation and the maximum generation
number, respectively, and b is a parameter to control the
dependence on the time.

Rate-Increasing Mutation
This increases the mutation rate over the generations. The
rate increases in proportion to the convergence rate. When

157



the population converges over a threshold, say 50%, we start
to raise the mutation rate. We keep changing mutation rates
unless the convergence rate falls down to 50% or less. When
the convergence rate drops below 50%, we set the mutation
rate to the initial rate. We used two versions as in the
following.

• linear-increasing mutation

r = (1 + k) · r0, k = max{0, �1 + c− c0
10

�} (1)

where r is the current mutation rate, r0 is the initial mu-
tation rate, c is the current convergence rate, and c0 is the
threshold.

• exponential-increasing mutation

r = 2k · r0, k = max{0, �1 + c− c0
10

�} (2)

3. EXPERIMENTAL RESULTS
Table 1 shows the experimental results of TSP instances.

The column ”Strategy,”“Fixed,” “Non-Uni,” “Lin-Inc,” and
“Exp-Inc”mean fixed-rate mutation, non-uniform mutation,
linear-increase mutation, and exponential-increase mutation,
respectively.

The experimental results of Table 1 show that the sug-
gested mutations were overall better than fixed-rate mu-
tation and non-uniform mutation. Non-uniform mutation
showed the worst in the context of hybrid GAs. The sug-
gested mutations showed improvement for all the instances
when combined with 5-pt, uniform, and distance preserv-
ing crossover. But when combined with cycle crossover we
could observe little improvement in statistical sense with 5%
risk. Although we used 5% risk for comparison, most cases
satisfied superiority with 1% risk for both problems.

The improvement was consistent in the experiments with
the graph bisection problem, as shown in Tables 2. The
suggested mutations overall showed improvement over the
fixed-rate (traditional) mutation and non-uniform mutation.

We should also note that the GAs found superior best
solutions with the suggested mutation, than with the fixed-
rate mutation and the non-uniform mutation.

4. CONCLUSIONS
In this paper, we suggested rate-increasing mutations and

investigated the effects in the context of hybrid GAs. We
suspect that one does not have to worry about somewhat
strong mutation in the late stages of hybrid GAs, while
the traditional GAs maintain or decrease the mutation rates
not to destroy attractive characteristics of high-quality so-
lutions. Local optimization heuristics, in hybrid GAs, may
recover most perturbed characteristics and even find new
ones by their moderately wide space search capability. The
experimental results backed up our suspection and showed
that rate-increasing mutation outperforms two philosophi-
cally representative mutations.

5. ACKNOWLEDGMENTS
This work was supported by the Engineering Research

Center of Excellence Program (Grant 2011-0000966) and

Table 1: TSP Test Results for the Instance
PCB3038(137694)

Strategy Crossover Best Average∗ σ/
√
n Time†

Fixed 5-pt 137694 137778.95 4.99 257.81
Uniform 137698 137757.23 4.51 1720.73
Natural 137694 137754.00 4.53 613.15
Cycle 137698 137735.08 3.23 600.43
DPX 1376988 137744.23 4.17 694.32
EAX 137698 137808.48 6.59 159.97

Non-Uni 5-pt 137694 137779.24 5.11 223.39
Uniform 137698 137772.43 4.96 342.98
Natural 137694 137768.62 5.37 634.89
Cycle 137698 137779.59 5.86 621.11
DPX 137698 137760.54 4.18 704.25
EAX 137694 137804.64 6.81 280.43

Lin-Inc 5-pt 137694 137726.34 5.79 466.58
Uniform 137698 137726.08 6.67 1866.99
Natural 137698 137736.52 5.51 1102.15
Cycle 137698 137723.47 4.21 899.91
DPX 137701 137734.07 4.16 1235.67
EAX 137694 137800.36 6.02 489.81

Exp-Inc 5-pt 137694 137722.76 4.66 505.88
Uniform 137698 137741.18 6.51 1992.67
Natural 137698 137731.92 4.02 1335.14
Cycle 137698 137734.34 3.95 967.68
DPX 137698 137720.10 4.23 1447.69
EAX 137698 137799.34 6.42 496.30

∗ Over 100 runs.
† CPU seconds on Pentium PC 2.66GHz.

Table 2: GB Test Results for the Instance U5000.10

Strategy Crossover Best Average∗ σ/
√
n Time†

Fixed 5-pt 85 126.73 0.988 22.13
Uniform 85 127.36 1.076 23.42
Natural 85 126.95 0.988 22.32
Cycle 85 126.04 0.996 22.02

Non-Uni 5-pt 89 142.00 0.982 19.37
Uniform 89 141.17 1.050 20.20
Natural 89 140.88 0.988 20.04
Cycle 89 139.12 1.072 19.90

Lin-Inc 5-pt 79 112.52 0.996 24.09
Uniform 79 113.32 0.996 24.99
Natural 79 112.44 1.072 24.31
Cycle 79 111.92 1.054 24.13

Exp-Inc 5-pt 79 114.23 1.070 24.65
Uniform 79 115.33 0.988 26.99
Natural 79 113.10 1.072 24.98
Cycle 79 113.27 0.996 24.58

∗ Over 1000 runs.
† CPU seconds on Pentium PC 2.66GHz.

Mid-career Researcher Program (Grant 2010-0014218) of Ko-
rea Ministry of Education, Science and Technology(MEST)
/ National Research Foundation of Korea(NRF). The ICT
at Seoul National University provided research facilities for
this study.

6. REFERENCES
[1] Z. Michalewicz. Genetic Algorithms + Data Structures

= Evolutionary Programs. Berlin, Germany:
Springer-Verlag, 1996.

158




