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ABSTRACT

A number of representation schemes have been presented
for use within Learning Classifier Systems, ranging from bi-
nary encodings to Neural Networks, and more recently Dy-
namical Genetic Programming (DGP). This paper presents
results from an investigation into using a fuzzy DGP repre-
sentation within the XCSF Learning Classifier System. In
particular, asynchronous Fuzzy Logic Networks are used to
represent the traditional condition-action production system
rules. It is shown possible to use self-adaptive, open-ended
evolution to design an ensemble of such fuzzy dynamical sys-
tems within XCSF to solve several well-known continuous-
valued test problems.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—knowledge acqui-
sition, parameter learning

General Terms

Experimentation
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1. INTRODUCTION

Recently, we [1] [3] investigated the use of a Dynamical
Genetic Programming representation scheme (DGP) within
Learning Classifier Systems (LCS). It was shown that LCS
are able to evolve ensembles of Random Boolean Networks
(RBN) to solve a number of discrete-valued computational
tasks. Additionally, it was shown possible to exploit memory
existing inherently within the DGP representation. More-
over, the networks in DGP are updated asynchronously - a
potentially more realistic model of Genetic Regulatory Net-
works (GRN) in general.

Fuzzy set theory is a generalization of Boolean logic in
which continuous variables can partially belong to sets. A
fuzzy set is defined by a membership function, typically
within the range [0,1], that determines the degree of be-
longing to a value of that set.
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The continuous dynamical systems known as Fuzzy Logic
Networks (FLN) [2] are a generalization of RBN where the
Boolean functions are replaced with fuzzy logical functions
from fuzzy set theory. In this paper, we explore the use of
asynchronous FLN as a representation scheme within the
XCSF [6] Learning Classifier System and show that it is
possible to extend DGP to the continuous-valued domain.

2. FUZZY DGP IN XCSF

The following modifications are made to the discrete DGP
scheme used in [3] to accommodate continuous-actions via
fuzzy logical functions. Here, a node’s function is repre-
sented by an integer which references the appropriate oper-
ation to execute upon its received inputs (see Table 1 for
the fuzzy functions used). Further, each node’s connectiv-
ity is represented as a list of kmqo integers (here kmaz = 5)
in the range [0, N], where 0 represents no input to be re-
ceived on that connection. Each integer in the connection
list, along with the node function, is subjected to mutation
on reproduction at the self-adapting rate p for that rule.
The output nodes provide a real numbered output in the
range [0, 1], and no averaging is used in order to preserve
crisp output, however if a given FLN has a value of less
than 0.5 on the match node, regardless of the state of its
outputs, the rule does not join [M]. After building [M] in
the standard way, [A] is built by selecting a single classifier
from [M] and adding matching classifiers whose actions are
within a predetermined range of that rule’s proposed action
(here the range is set to £0.005). Parameters are then up-
dated as usual in [A], however, similar to XCSF, the fitness
adjustment takes place in [M]. The GA is then executed
as usual in [A]. Exploitation functions by selecting the sin-
gle rule with the highest prediction multiplied by accuracy
from [M]. Following [7], an extra prediction weight, which
receives as input the classifier’s action, is included. In ad-
dition, the prediction weights for offspring are reset upon
reproduction to prevent inexperienced rules being chosen in
exploitation.

Table 1: Selectable Fuzzy Logic Functions

ID  Function Logic

0  Fuzzy OR (Max/Min) max(z,y)

1 Fuzzy AND (CFMQVS) T XY

2 Fuzzy AND (Max/Min) min(z,y)

3 Fuzzy OR (CFMQVS and MV) min(1l,z +y)
4 Fuzzy NOT 1—=z

5 Identity x




3. EXPERIMENTATION

[7] presented a form of XCSF where the action was com-
puted directly as a linear combination of the input state and
a vector of action weights, and conducted experimentation
on the continuous-action Frog problem, selecting the classi-
fier with the highest prediction for exploitation. [5] subse-
quently extended this by adapting the action weights to the
problem through the use of an Evolution Strategy (ES) and
reported greater than 99% performance after an averaged
number of 30,000 trials (P = 2000), which was superior to
the performance reported by [7]. More recently, [4] applied
a Fuzzy-LCS with continuous vector actions, where the GA
only evolved the action parts of the fuzzy systems, to the
continuous-action Frog problem, and achieved a lower error
than Q-learning (discretized over 100 elements in = and a)
after 500,000 trials (P = 200).

The Frog Problem [7] is a single-step problem with a non-
linear continuous-valued payoff function in a continuous one-
dimensional space in the range [0,1]. A frog is given the
learning task of jumping to catch a fly that is at a distance, d,
from the frog, where 0 < d < 1. The frog receives a sensory
input, z(d) = 1 — d, before jumping a chosen distance, a,
and receiving a reward based on its new distance from the
fly, as given by:

P(z,a) = { 2 — (a;m:ac)l

The parameters used here are the same as used by [7] and
[5]. Fig. 1 illustrates the performance of fDGP-XCSF in
the continuous-action Frog Problem. It can be seen that
greater than 99% performance is achieved in fewer than
4,000 trials (P = 2000), which is faster than [5] (>99%
after 30,000 trials, P = 2000) and [7] (>95% after 10,000
trials, P = 2000), and with minimal changes resulting in
none of the drawbacks; i.e., exploration is here conducted
with roulette wheel on prediction instead of deterministi-
cally selecting the highest predicting rule, enabling true re-
inforcement learning. Furthermore, in [5] the action weights
update component includes the evaluation of the offspring
on the last input/payoff before being discarded if the mutant
offspring is not more accurate than the parent; therefore ad-
ditional evaluations are performed which are not reflected in
the number of trials reported.

The average number of (non-unique) macro-classifiers used
by fDGP-XCSF (Fig. 1) rapidly increases to approximately
1400 after 3,000 trials, before converging to around 150;
this is more compact than XCSF with interval conditions
(~1400) [7], showing that fDGP-XCSF can provide strong
generalisation. The networks grow, on average, from 3 nodes
to 3.5, and the average connectivity remains static around
2.1, while the average value of T increases by from 28.5 to
31.5 (not shown). The average mutation rate declines from
50% to 2% over the first 15,000 trials before converging to
around 1.2% (Fig. 1).

cx+a<l1
rx4+a>1

(1)

4. CONCLUSIONS

It has been shown that XCSF is able to design ensembles
of dynamical fuzzy logic networks whose emergent behaviour
is able to be collectively exploited to solve a continuous-
valued task via reinforcement learning, where performance
in the continuous Frog Problem was superior to those re-
ported previously in [4], [5] and [7].

168

Performance —H&—
Error ——

Macro-classifiers/2000 —A—
Mutation Rate —0— _|

A
X "' X

40000 60000 80000
Trials

0 20000 100000

Figure 1: Performance, error, macro-classifiers and
mutation rate in continuous-action Frog Problem.
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