
Fast Prediction Computation in Learning Classifier
Systems Using CUDA

Daniele Loiacono
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Milano 20133, Italy

loiacono@elet.polimi.it

ABSTRACT

Computing the system prediction is one of the most impor-
tant and computationally expensive tasks in Learning Clas-
sifier Systems. In this paper, we provide a parallel solution
to the problem of computing the prediction array in XCS
using the NVIDIA’s Compute Unified Device Architecture
(CUDA). We performed several experiments to test our par-
allel solution using two different types of GPUs and to study
how performances are affected by (i) the problem size, (ii)
the number of problem actions, and (iii) the number of clas-
sifiers in the population. Our experimental results show a
speedup that ranges from slightly less than 2× up to 32×.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms

Algorithms, Performance

Keywords

LCS, CUDA, GPU, Prediction Array

1. INTRODUCTION
Learning classifier systems [5, 3, 8] are rule-based evolu-

tionary systems that can solve classification as well as re-
inforcement learning problems by evolving a population of
classifiers, i.e., condition-action-prediction rules.
Recently, Llorà and Sastry [7] showed that matching clas-

sifiers and computing the prediction is the most computa-
tional expensive step in learning classifier systems and can
take up to 80% of the overall computational time [7]. Ac-
cordingly, several methods have been proposed in the liter-
ature to speed up matching in learning classifier systems [7,
1, 6, 2].
In an early work Lanzi and Loiacono [6], used the NVIDIA’s

Compute Unified Device Architecture (CUDA) to imple-
ment matching for real inputs using interval-based condi-
tions and for binary inputs using ternary conditions. Later,
Franco et al. [2] applied CUDA to speed-up the evaluation of
rules in BioHel, an evolutionary learning system specifically
devised to deal with large datasets. In this work, following

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

an approach similar to [2], we take the work of Lanzi and
Loiacono [6] a step further: while in [6] CUDA has been ap-
plied only to build the match set, here GPUs are exploited
also to compute the prediction array. In particular, we focus
on the XCS classifier system [8] applied to problems involv-
ing real inputs.

2. COMPUTINGTHEPREDICTIONARRAY

WITH GPUS
Our CUDA implementation builds the prediction array

in three main steps: (i) matching the current input and
computing accordingly the contribution of each classifier to
the prediction array; (ii) reducing (i.e., summing up) the
contributions of all the classifiers in each CUDA’s thread
block; (iii) computing the final prediction array.

In the first step we exploit the parallel computing capa-
bilities offered by GPUs to perform the classifiers’ matching
and to compute the contribution of each classifier to the pre-
diction array. In the second step we take advantage of the
GPUs to sum up the contributions to the prediction array of
the classifiers in each block of threads (namely, we applied
the Sequential Addressing [4] parallel reduction schema). Fi-
nally, the contributions of each block of thread are combined
together on the CPU and the final result is computed.

3. EXPERIMENTAL RESULTS
We performed a set of experiments to assess the perfor-

mance of our CUDA implementation with respect to a CPU
implementation. We generated a population of N classifiers
with interval-based conditions [9] of length n and 1000 ran-
dom input configurations. We build the prediction array for
each random input configuration and measured the average
time required. We repeated each experiment 10 times.

Experiments have been carried on a server with 2 quad-
core Xeon (2.66 GHz), 8GB of RAM, running Linux Fedora
Core 6 and equipped with a Tesla C1060 and a GeForce

GTX 470. The performance was measured as the average
wall clock time to build the 1000 prediction arrays over a
population of N classifiers. In particular, performance takes
into account (i) the time to load each one of the 1000 inputs
to be matched into the GPU; and (ii) the time to move the
result data structures from the GPU to main CPU memory.
Table 1 reports the average computation time on the CPU,
on Tesla C1060 and on GeForce GTX 470 for problems (i)
with a number of inputs n, chosen in {10, 50, 100} and (ii)
involving a number of action m in {2, 4, 8}; the population

169



n m CPU Tesla C1060 GeForce GTX 470

10 2 0.261 ± 0.000 0.147 ± 0.002 0.092 ± 0.002

10 4 0.261 ± 0.000 0.164 ± 0.002 0.102 ± 0.003

10 8 0.261 ± 0.000 0.215 ± 0.002 0.139 ± 0.003

50 2 0.797 ± 0.006 0.266 ± 0.002 0.143 ± 0.000

50 4 0.793 ± 0.007 0.283 ± 0.003 0.152 ± 0.002

50 8 0.795 ± 0.004 0.336 ± 0.002 0.190 ± 0.000

100 2 2.242 ± 0.011 0.419 ± 0.001 0.208 ± 0.003

100 4 2.282 ± 0.045 0.435 ± 0.002 0.216 ± 0.000

100 8 2.244 ± 0.009 0.487 ± 0.001 0.254 ± 0.001

(a)

n m CPU Tesla C1060 GeForce GTX 470

10 2 3.029 ± 0.019 0.608 ± 0.002 0.268 ± 0.002

10 4 3.017 ± 0.016 0.757 ± 0.002 0.321 ± 0.001

10 8 3.024 ± 0.009 1.161 ± 0.003 0.529 ± 0.001

50 2 15.003 ± 0.077 1.821 ± 0.001 0.587 ± 0.003

50 4 15.013 ± 0.074 1.969 ± 0.001 0.640 ± 0.003

50 8 15.039 ± 0.128 2.376 ± 0.001 0.849 ± 0.003

100 2 29.511 ± 0.095 3.316 ± 0.001 0.980 ± 0.003

100 4 29.515 ± 0.075 3.465 ± 0.001 1.032 ± 0.001

100 8 29.510 ± 0.090 3.864 ± 0.001 1.239 ± 0.001

(b)

n m CPU Tesla C1060 GeForce GTX 470

10 2 34.025 ± 0.061 5.217 ± 0.002 2.067 ± 0.001

10 4 34.014 ± 0.062 6.676 ± 0.002 2.576 ± 0.003

10 8 34.057 ± 0.054 11.048 ± 0.002 4.395 ± 0.010

50 2 151.962 ± 0.234 17.622 ± 0.005 5.144 ± 0.002

50 4 151.866 ± 0.281 19.082 ± 0.003 5.654 ± 0.002

50 8 151.864 ± 0.403 23.469 ± 0.012 7.470 ± 0.004

100 2 296.013 ± 0.712 30.228 ± 0.026 8.977 ± 0.005

100 4 296.154 ± 0.623 31.663 ± 0.020 9.487 ± 0.008

100 8 295.622 ± 0.455 35.957 ± 0.011 11.303 ± 0.005

(c)

Table 1: Time (in seconds) required to build the
prediction array for 1000 instances when the prob-
lem involves 10, 50 or 100 real inputs and 2, 4, or
8 actions; the population size N is (a) 10000, (b)
100000, and (c) 1000000; statistics are averages over
10 runs.

size N is either 10000 (Table 1a), 100000 (Table 1b), or
1000000 (Table 1c).
The results show that the CUDA implementation always

outperforms the CPU implementation and that the GeForce
GTX 470 always outperforms the Tesla C1060. In addition,
the speedup changes with respect to the number of actions
(m) and to the number of classifiers in the population (N).
Notice that only on larger problems (i.e., when n = 50 or
n = 100) the computation on the GPUs results in a very
significant speedup, that is up to 32× on the GeForce GTX

470 and up to 10× on the Tesla C1060. Finally, while the
number of actions m does not affect the performance on
the CPU, on the GPUs the higher is m the worse is the
performance.

4. CONCLUSIONS
In this paper, we took the the work of Lanzi and Loia-

cono [6] a step further by exploiting the massive parallelism
available on GPUs to compute the prediction array in XCS.
Although our approach can be applied to any encoding of the
classifier condition, here we focused on the interval-based en-
coding, introduced in [9] to deal with real inputs. We tested
our parallel implementation on two different GPUs and com-
pared it to a CPU implementation with several configura-
tions. The results of the experimental analysis were very
promising: (i) the computation on GPUs resulted, in our
experimental setup, always faster with respect to the CPU
and (ii) the speedup obtained against the CPU-based im-
plementation is up to 32×; in particular, the larger is the
population of classifiers the larger is the speedup; on the
other hand, the larger is the number of problem actions, the
worse is the speedup achieved on the GPUs.

5. REFERENCES
[1] Martin V. Butz, Pier Luca Lanzi, Xavier Llorà, and

Daniele Loiacono. An analysis of matching in learning
classifier systems. In Conor Ryan and Maarten Keijzer,
editors, Genetic and Evolutionary Computation

Conference, GECCO 2008, Proceedings, Atlanta, GA,

USA, July 12-16, 2008. ACM Press, 12-16 July 2008.

[2] Maŕıa A. Franco, Natalio Krasnogor, and Jaume
Bacardit. Speeding up the evaluation of evolutionary
learning systems using gpgpus. In Proceedings of the

12th annual conference on Genetic and evolutionary

computation, GECCO ’10, pages 1039–1046, New York,
NY, USA, 2010. ACM.

[3] David E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,
Reading, Mass., 1989.

[4] Mark Harris. Optimizing parallel reduction in cuda,
2007.
http://developer.download.nvidia.com/compute/cuda

/1_1/Website/projects/reduction/doc/reduction.pdf.

[5] John H. Holland and J. S. Reitman. Cognitive systems
based on adaptive algorithms. 1978. Reprinted in:
Evolutionary Computation. The Fossil Record. David
B. Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7.

[6] Pier Luca Lanzi and Daniele Loiacono. Speeding up
matching in learning classifier systems using cuda. In
Jaume Bacardit, Will N. Browne, Jan Drugowitsch,
Ester Bernadó-Mansilla, and Martin V. Butz, editors,
IWLCS, volume 6471 of Lecture Notes in Computer

Science, pages 1–20. Springer, 2009.

[7] Xavier Llorà and Kumara Sastry. Fast rule matching
for learning classifier systems via vector instructions. In
Mike Cattolico, editor, GECCO ’06: Proceedings of the

8th annual conference on Genetic and evolutionary

computation, pages 1513–1520, New York, NY, USA,
2006. ACM Press.

[8] Stewart W. Wilson. Classifier Fitness Based on
Accuracy. Evolutionary Computation, 3(2):149–175,
1995.

[9] Stewart W. Wilson. Mining oblique data with xcs. In
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W.
Wilson, editors, IWLCS, volume 1996 of Lecture Notes

in Computer Science, pages 158–176. Springer, 2000.

170




