
How Many Neurons? A Genetic Programming Answer

Leonardo Trujillo, Yuliana Martínez and Patricia Melin
Instituto Tecnológico de Tijuana, Tijuana, BC, México

leonardo.trujillo.ttl@gmail.com,ysaraimr@gmail.com,pmelin@tectijuana.edu.mx

ABSTRACT
The goal of this paper is to derive predictive models that
take as input a description of a problem and produce as out-
put an estimate of the optimal number of hidden nodes in
an Artificial Neural Network (ANN). We call such compu-
tational tools Direct Estimators of Neural Network Topology
(DENNT), an use Genetic Programming (GP) to evolve them.
The evolved DENNTs take as input statistical and complex-
ity descriptors of the problem data, and output an estimate
of the optimal number of hidden neurons.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—pro-
gram synthesis

General Terms
Algorithms, Experimentation, Performance

Keywords
Artificial Neural Networks, Genetic Programming

1. INTRODUCTION
Designing an ANN for a specific task is not a trivial en-

deavor and is normally carried out by trail and error. Con-
sider the common Multilayer Perceptron (MLP), for instance,
a system designer must choose the type of activation func-
tions, the manner in which neurons are connected, the learn-
ing rule, the number of hidden layers and the number of
nodes in each layer. But given a problem, it is difficult to
infer how the ANN ought be constructed. In fact, even if
we only focus on a MLP with a single hidden layer, with all
other characteristics fixed, it is not easy to answer the follow-
ing: How many hidden neurons are necessary to achieve op-
timal performance? Researchers have developed a variety of
methods to answer the above question. A coarse taxonomy
reveals two groups: manual methods and automatic meth-
ods. The first group is the most common, based on infor-
mal trial and error. Automatic methods attempt to relieve the
system designer from having to specify the number of neu-
rons himself; for instance, by using an exhaustive search. A
subgroup are the iterative methods, which include learning-
based approaches and meta-heuristic approaches. Learning-

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

based approaches integrate an iterative optimization proce-
dure with traditional learning algorithms, to progressively
add or remove nodes [3, 1]. Other approaches use a meta-
heuristic search, such as evolutionary computation [7, 4].

The above approaches have achieved good results, but are
also limited in some ways. For example, exhaustive search
incurs a high computational cost. On the other hand, for
iterative methods a system designer needs to add, or de-
velop, another layer of computational machinery to the sys-
tem. Moreover, iterative methods can be slow. or might re-
quire extensive experimental tunning. We believe that an
ideal method should be simple to implement, use, and re-
produce. When confronted with a problem, such a method
would take the data as input, or a description of the data,
and produce as output an accurate estimation of the optimal
number of neurons. We call such an approach a Direct Esti-
mator of Neural Network Topology (DENNT).

2. PROPOSAL
The proposed approach is to use GP to evolve DENNTs for

a fully connected MLP with a single hidden layer, applied to
real-valued data classification.

2.1 Problem statement
The above goal is formulated as a supervised learning and

optimization problem. First, we build a set of synthetic 2-
class multimodal problems, call this set P . Second, from each
problem pi ∈ P we extract a vector of descriptive features
βi, with the goal of capturing problem specific characteris-
tics. Third, we conduct an exhaustive search to determine
the number of neurons αi that achieves the best performance
for each problem pi. During the exhaustive search the num-
ber of neurons in the hidden layer is varied within the range
[1, 30]. Afterwards, we have a set of problems P , where each
pi ∈ P is described by a descriptive vector βi, as well as the
number of neurons αi with which the MLP achieved the best
results. Therefore, the problem we pose is that of finding an
optimal DENNT Ko, such that

Ko = arg min
K

{Err[K(βi), αi]} ∀pi ∈ P (1)

where Err[, ] is the the root-mean-square error (RMSE).

3. GP SYSTEM AND SYNTHETIC DATA
The terminal set T contains descriptive measures that can

be extracted from the problem data, which are concatenated
to construct vector βi. We use two types of measures, statis-
tical and complexity. The statistical measures are a subset of

175



−6 −5 −4 −3 −2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

4

(a) 3 Neurons
−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

(b) 11 Neurons

Figure 1: Scatter plots of two different problems.

0 5 10 15 20 25 30
50

60

70

80

90

100

Neurons

C
la

ss
if

ic
at

io
n

Neuron with the highest
classification performance

of an ANN

(a) Signature

0 50 100 150 200

2

2.5

3

3.5

GENERATION

F
IT

N
E

S
S

 

 

Train
Test

(b) Evolution

Figure 2: (a) Performance signatures for the ANNs. (b) Me-
dian of the best training fitness and test fitness.

those proposed in [5]; these are: (1) the geometric mean ra-
tio of the pooled standard deviations to standard deviations
of the individual population (SD); (2) the average absolute
correlation coefficients between two features (CORR) and its
squared value (CORR2); (3) the average skewness of features
(SKEW); (4) the average kurtosis of features (KURT); (5) the
average entropy of features (HX) and its squared value (HX2).

The complexity measures directly consider the geometry
of the distribution of data samples over the feature space.
These are a subset of those proposed in [2], they are: (1)
Fisher’s discriminant ratio (FD); (2) volume of overlap re-
gion (VOR); (3) feature efficiency (FE); (4) class distance ra-
tio (CDR); (5) classification error of a 1-NN classifier (E1NN).
The function set F contains common primitive functions used

for symbolic regression, F =
n

+,−, ∗, /,√,sin, cos, log, xy
o

.
Fitness is posed as a cost function, using the RMSE com-

puted on a set of n training samples, given by

f(K) =

vuuut
nX

i=1

((�K(βi)�) − αi)
2

n
, (2)

where αi is number of neurons of problem pi.
To compute fitness, we randomly generate 1000 two-class

classification problems using Gaussian mixture models, us-
ing a similar scheme to the one followed in [6], see Figure
1. To classify each problem we use a fully connected feed-
forward MLP with one hidden layer, hyperbolic tangent sig-
moid transfer functions, and trained using backpropagation
with adaptive learning rate and momentum. We test differ-
ent network topologies in search of the one that achieves the
best performance by varying the number of hidden neurons
within the range of [1, 30]. In each case, at a different num-
ber of neurons, we determine the performance of the ANN
classifier using 3-fold cross-validation, and perform 30 inde-

Table 1: GP parameters.
Parameter Description
Population size 500 individuals
Generations 200 generations
Initialization Ramped Half-and-Half, 10 levels max. depth
Operator probabilities Crossover pc = 0.8, Mutation pµ = 0.2
Bloat control Dynamic depth
Maximum dynamic depth 11 levels
Hard maximum depth 30 levels
Selection Lexicographic parsimony tournament
Survival Keep best elitism
Runs 30

pendent runs, a total of 90 performance estimates. For each
topology we take the median performance as the representa-
tive value. This is depicted in Figure 2(a), where the classifi-
cation accuracy achieved at each number of neurons is plot-
ted. These graphs are performance signatures of the ANNs.
To determine the optimal number of neurons for each prob-
lem we take the maximum value of this plot.

4. RESULTS AND CONCLUSIONS
Table 1 contains the parameters of the GP, a Koza-style GP

with the dynamic depths method and lexicographic parsi-
mony pressure for bloat control. The GP was executed 30
times, thus the results are statistics computed over all runs.
In each run, 70% of the problems are used for training and
the rest for testing. Figure 2(b) shows the evolution of the
best individual fitness, and the fitness of the best individ-
ual computed with the test set, showing median values. The
training process achieves similar training and testing fitness.
Moreover, both reach low values, which corresponds with a
low predictive error. The best median predictive error for the
training set of problems is 2.03, while for the test set it is 2.15.
The performance of the evolved DENNTs is encouraging, it
suggest that is possible to predict the optimum number of
neurons using only a description of the data. While the pre-
diction is not yet perfect, we believe that the proposal can
be extended, and refined, to derive more accurate predictive
models. Such predictors could allow an autonomous system
to configure its internal problem solving methods based on a
description of the problem it needs to solve.

Acknowledgements
Second author supported by scholarship 298654, Consejo Na-
cional de Ciencia y Tecnología (CONACYT), México.

References
[1] M. Frean. The upstart algorithm: a method for constructing and training

feedforward neural networks. Neural Comput., 2:198–209, April 1990.

[2] T. K. Ho and M. Basu. Complexity measures of supervised classification
problems. IEEE Trans. Pattern Anal. Mach. Intell., 24:289–300, March 2002.

[3] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In NIPS’89,
pages 598–605, 1989.

[4] P. Melin and O. Castillo. Hybrid Intelligent Systems for Pattern Recognition
Using Soft Computing: An Evolutionary Approach for Neural Networks and
Fuzzy Systems (Studies in Fuzziness and Soft Computing). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[5] S. Y. Sohn. Meta analysis of classification algorithms for pattern recogni-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 21:1137–1144, November 1999.

[6] L. Trujillo, Y. Martínez, and P. Melin. Estimating classifier performance
with genetic programming. In S. Silva et al., editor, Proceedings of the 14th
European Conference on Genetic Programming, EuroGP 2011, volume 6621 of
LNCS, pages 275–286, Turin, Italy, 2011. Springer Verlag.

[7] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

176




