Evolution of Reward Functions for Reinforcement Learning
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ABSTRACT Russell [2], described a class of ‘shaping’ reward adjustments

and showed that such adjustments could improve learning
system performance. But they did not specify a mechanism
for deriving such beneficial adjustments for particular do-
mains or problems, and practitioners have found that it can
be difficult to design good reward functions “by hand.”

We have explored the opportunities for the use of evolu-
tionary computation in the search for reward functions that
improve the performance of reinforcement learning systems.
We have done so in the context of recent work by Singh,
Lewis, and Barto [5, 6] demonstrating that for some prob-
lems there exist a wide spectrum of reward functions with
different properties, and that the apparently most natural
reward functions may not be optimal. They showed that
even in simple problems, reward functions may exist that
enable significantly faster learning than do natural task-

The reward functions that drive reinforcement learning sys-
tems are generally derived directly from the descriptions of
the problems that the systems are being used to solve. In
some problem domains, however, alternative reward func-
tions may allow systems to learn more quickly or more effec-
tively. Here we describe work on the use of genetic program-
ming to find novel reward functions that improve learning
system performance. We briefly present the core concepts of
our approach, our motivations in developing it, and reasons
to believe that the approach has promise for the production
of highly successful adaptive technologies. Experimental re-
sults are presented and analyzed in our full report [3].

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]|: Automatic Programming— specific reward functions. The alternate reward functions
Program synthesis; 1.2.6 [Artificial Intelligence|: Learn- may be related to the problem in counterintuitive ways and
ing they may require precise tuning to work well. Singh, Lewis,
and Barto [6] linked these properties explicitly to evolution-
General Terms ary processes, noting that the discovery and tuning processes
that would be required to produce optimal reward func-
Algorithms tions are akin to biological evolutionary processes. They
did not, however, implement evolutionary search for reward
KeyWOI‘dS functions; they used exhaustive search over small reward

function spaces for simple problems in order to explore the

nature of reward functions, but they did not seek to auto-

mate reward function search for more complex problems.
We employed evolutionary computation techniques to ex-

Reinforcement learning, genetic programming, Push, PushGP,
hungry-thirsty problem

1. PRIOR WORK plore whether or not evolutionary processes could indeed

Reinforcement learning is a machine learning paradigm be applied usefully to the search for reinforcement learning
that addresses problems in which an agent seeks to maxi- reward functions [3]. We used genetic programming (specif-
mize cumulative rewards in environments that provide no ically PushGP, a stack-based genetic programming system
teacher or supervisor and in which rewards may be signif- built on the Push programming language [7, 8]) to search
icantly delayed [9]. Reinforcement learning systems have for alternate reward functions for a Q-learning system [11]
achieved notable successes in a wide range of application ar- in the Hungry-Thirsty domain [5]. The evolving individuals
eas including robotics, control, operations research, games, in our genetic programming system were reward functions,
and human-computer interaction. They are driven by imme- each of which was tested for fitness by using it to drive a
diate environmental reward signals that are usually derived Q-learning agent’s behavior and learning over a “lifetime” in
directly from the descriptions of the problems that the sys- the problem environment. We demonstrated that this kind
tems are being used to solve. However, the directness of of evolutionary search can be worthwhile and argued that
this derivation is not mandated by reinforcement learning it can produce superior reward functions in a variety of cir-
theory and indeed the algorithms for reinforcement learning cumstances, for example when an agent faces distributions of
can in some cases learn faster or more effectively when using related environments, non-stationary environments, or prob-
different reward functions. For example, Ng, Harada, and lems in which agents have limited lifetimes. We also showed

that the evolutionary search process is affected only mini-
Copyright is held by the author/owner(s). mally by .Changes to‘ the scale of the problem being sc.)lved7
GECCO'11, July 1216, 2011, Dublin, Ireland. and that it can continue to perform well even as the dimen-
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sionality of the state space is increased. Details are available
in our full report [3].

2. OPPORTUNITIES

Most highly adaptive natural systems involve adaptive
mechanisms both at the population level (evolution) and
at the individual level (learning). Experiments have been
conducted for decades on various hybridizations of machine
learning and evolutionary computation technologies [1], but
we think that the particular hybridization that we have de-
scribed here is particularly promising for several reasons.

First, the approach described here allows one to use off-
the-shelf machine learning and evolutionary computation
technologies. The reinforcement learning system that is used
in this approach does not have to be modified at all; it just
runs with a reward function that is provided by an evolu-
tionary computation system rather than a reward function
that was designed by a human. Furthermore, the approach
that we have described here could be applied to any area for
which reinforcement learning is applicable, and reinforce-
ment learning has already proven to have high utility in
many important application areas. Similarly, the genetic
programming system does not have to be modified at all for
it to be used in the framework that we have discribed; the
learning all takes place within the fitness function, with the
fitness of the evolving reward functions being determined by
the learning performance of the simulated agent.

Second, the clean interface between the machine learning
and evolutionary computation components provides great
freedom, when confronting a new application area, in choos-
ing the specific technologies to use on both sides. There are
many different genetic programming techniques and many
different reinforcement learning algorithms, and any of the
former could conceivably be used to evolve reward functions
for any of the latter. The user of our approach is free to
choose the reinforcement learning technique most appropri-
ate for the learning task that is posed by the environment,
and also to choose the genetic programming technique most
appropriate for the evolutionary task that is posed by the
reward function fitness landscape generated by the environ-
ment in conjunction with the learning system.

Finally, we would argue that the approach that we have
described here is largely consistent with at least one of the
major interactions between evolution and learning in nature.
Learning, not evolution, acts within an organism’s lifetime,
but learning is driven by in part by intrinsic motivations
that are crafted by evolution. In our framework the reward
functions may serve in part as intrinsic motivations, and we
evolve agents that have reward functions that drive learning
in ways that are advantageous to the agents and their repro-
ductive success. Because of these parallels—which are also
present in some but not all other hybridizations of machine
learning and evolutionary computation technologies—and
because of the extraordinary success of the natural adaptive
systems that combine learning and evolution in this way,
there is reason to believe that our proposed approach can
produce highly successful adaptive technologies.

The approach also presents challenges, however. For ex-
ample, many real-world reinforcement learning problems re-
quire fitness tests that are computationally expensive. Work
in this area will therefore benefit from evolutionary compu-
tation methods that increase the speed of fitness testing [10]
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and techniques that allow evolutionary search to succeed
with fewer fitness tests [4].

In sum, the evolution of reinforcement learning reward
functions is a challenging and yet highly promising applica-
tion area for evolutionary computation systems. We urge
other researchers in evolutionary computation to consider
further work in this area.
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