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ABSTRACT
Learning Classifier Systems (LCS) have not been widely ap-
plied to image recognition tasks due to the very large search
space of pixel data. Assimilating the image domain’s Haar-
like features into the XCS framework, the feature pattern
classifier system (FPCS) has produced promising results in
the numeral recognition task. However for large multi-class
image classification problems the training rates can be un-
acceptably slow, whilst performance does not match su-
pervised learning approaches. This is partially due to the
fact that traditional LCS only retain limited information
about the problem examples. Confusion Matrices show the
classes that a learning technique has difficulty separating,
but require supervised knowledge. This paper shows that
the knowledge in a confusion matrix is beneficial in direct-
ing learning. Most importantly the work shows that confu-
sion matrices can be beneficially adapted to non-supervisory
learning.
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1. INTRODUCTION
Learning Classifier Systems (LCS) can be applied to model

online learning scenarios. By combining reinforcement learn-
ing with evolutionary computation to enable construction of
a population of rules they can successfully learn to operate
within unknown environments. Online, robotic agents often
rely upon visual input, due to the richness of the informa-
tion available. The work presented in this paper uses LCS to
successfully learn in the image domain by replacing previous
encodings with sparse Haar-like features [2].

The underlying hypothesis is that traditional LCS ap-
proaches discard much of the information that they encounter
during the learning process. This results in unacceptably
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long training times to reach convergence on large problems.
The new method, feature pattern classifier system (FPCS),
is motivated by considering machine learning approaches
and the cognitive science background of LCS. We attempt to
improve the learning rate by introducing ‘internal’ learning
mechanisms, which retain information encountered during
training. This is demonstrated on the well known MNIST
hand-written digit dataset [4].

2. FEATURE PATTERN CLASSIFIERS
Traditionally, a learning classifier system represents an

agent enacting in an unknown environment via a set of sen-
sors for input and a set of effectors for actions. XCS, a for-
mulation of LCS that uses accuracy-based fitness to learn
the problem by forming a complete mapping of states and
actions to rewards [6], is used as the base system. For prob-
lems in the image domain common encodings, ternary or
real-alphabet, are both computationally intractable and in-
sufficiently flexible—it is not uncommon for two images to
contain closely related states, but have no identical pixels
(consider 256 shades of grey in greyscale images). One pop-
ular type of features that is used in state of the art image
classification systems [5] is the Haar-like rectangular fea-
tures.

The value of feature f at location l = (x, y) and scale
u = (width, height), f(s, l, u) can be computed with just a
few lookup calls in the integral image II .

By thresholding the value of f(s, l, u) between tlow and
thigh, binary decision rules can be formed that detect the
presence of desired level of contrast between neighbouring
regions in the image. We thus propose the following condi-
tions for use in the LCS decision rules:

ci = c(f, l, u, tlow, thigh),

ci(s) =

{
true, if tlow < f(s, l, u) < thigh

false, otherwise

Notice that the Haar-like features are weak, in the sense
that a single feature is insufficient to describe a complex
pattern. We therefore utilise a ‘messy’ encoding [3]: by
allowing multiple feature conditions to be joined using a
logical ‘and’ operator, the resulting decision rule conditions
are sufficiently complex to make learning feasible:

c(s) = c1(s) ∧ . . . ∧ cm(s).

Confusion matrices are a useful tool in machine learning
that enable analysis of the errors that the learning system
is making. Table 1 shows part of the confusion matrix of
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the proposed FPCS as recorded on an independent testing
set after 4 000 000 generations (one generation is a single
message instance). In order to improve the learning rate,
the system can be guided towards the ‘problematic’ regions
of the problem domain, for example to distinguish between
examples in most often confused classes.

The first important observation is that the information
present in the confusion matrix is not trivially available to
the agent—for any given example/state, the agent does not
know the correct action from the environment. In order
to obtain such information, the agent stores (state, action,
reward) triplets. It then deduces the correct action for a
state when one of the actions has a higher reward than the
others. We will refer to such functionality in the LCS as
a long term memory component, a weak analogy to func-
tional aspects of memory in cognitive systems. The long
term memory has to operate under the following assump-
tions:

• Some of the states in the environment may be encoun-
tered multiple times during the exploration.

• If at least two (action, reward) pairs are present in
the memory for a given state, and one of the rewards
is higher, the corresponding action can be treated as
established truth for that particular state.

If established truth (high reward for action) is available for
any given state, then record (action, established truth) in
the confusion matrix component. If subsequent incorrect
action (confusion), then focus training on mistaken actions.

3. EXPERIMENTAL RESULTS
The necessary adjustments to a standard XCS [1] include

mutation probability μ = 0.4 (significantly higher than typ-
ical XCS applications) with tournament selection fraction
τ = 0.4 and up to 10 ‘Messy’ features. Each experiment was
repeated 30 times and the result recorded on the separate
testing set of 10 000 MNIST examples.

Table 1: Confusion matrix for the independent
evaluation set (mean performance±standard devia-
tion, %). Rows correspond to system classification,
columns correspond to actual classes (E estimated,
A actual).

E\A 0 1 2 ... 9

0 98±0 0±0 1±0 ... 1±0

1 0±0 99±0 0±0 ... 1±0

2 0±0 0±0 94±1 ... 0±0

... ... ... ... ... ...

9 0±0 0±0 1±0 ... 89±2

Figure 1 confirms that the memory component was use-
ful as at least some of the states were encountered multi-
ple time so that the confusion matrix could record its best
experiences. Performance improvements occur prior to the
total number of instances in the data being experienced as it
was coupled with the generalisation of the LCS. The ‘true’

Figure 1: Performance (mean with standard devi-
ation bars) of the different methods. The long-
term memory FPCS approaches the ‘ideal’ divide
and conquer system.

(rather than deduced) CM was used in a divide and conquer
approach of separate training sets to determine the bench-
mark, but unprincipled, performance.

4. CONCLUSIONS
The concept of confusion matrix has been adapted to cre-

ate a novel online mechanism for LCS. This is shown to have
significant benefit for LCS performance over the same num-
ber of problem instances, without breaking the principles of
LCS, i.e. online learning without prior knowledge. It is nec-
essary to assume that there will be a degree of repetition in
the environment.
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