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ABSTRACT
A black box model is a numerical simulation that is used
in optimization. It is computationally expensive, so it is
convenient to replace it with surrogate models obtained by
simulating only a few points and then approximating the
original black box. Here, a recent approach, using Symbolic
Regression via Genetic Programming, is compared experi-
mentally to neural network based surrogate models, using
test functions and electromagnetic models. The accuracy
of the model obtained by Symbolic Regression is proved to
be good, and the interpretability of the function obtained is
useful in reducing the optimization’s search space.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

General Terms
Algorithms, Experimentation

Keywords
Black box optimization, surrogate models, genetic program-
ming, symbolic regression, neural networks

1. INTRODUCTION
Optimization of engineering systems using metaheuristics

requires a lot of computationally expensive numerical simu-
lations. Recently, numerical simulation have been replaced
with a surrogate model created with the results of the simu-
lation of a few points, using methods like Design and Analy-
sis of Computer Experiments (DACE) and Artificial Neural
Networks (ANN) [2]. DACE and ANNmodels replace an ex-
pensive black-box by a cheaper black box. It is not possible
to gain any insight into the original black box with the new
black box. SR via GP has been used by other researchers
before [1], but this paper discusses for the first time the ad-
vantage of interpretability of the model generated by SR via
GP; and it presents a performance study of SR via GP com-
pared to ANN for a wider range of problems, proving that
accuracy of surrogate models obtained SR via GP from a
small number of samples is competitive with ANN models.
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Figure 1: Geometry of the Yagi antenna study case

2. REVIEW OF RELATED METHODS
DACE or Kriging modeling uses functions made of Krig-

ing basis, such as multi-variate Gaussian functions. It has
trouble dealing with short scale variability, and they have no
guarantee of accuracy near maxima and minima. ANNs are
used to create surrogate models [2]. They also have trouble
dealing with short scale variability and accuracy in maxima
and minima. SR via GP is a method for obtaining math-
ematical expressions that match samples. Kordon [1] has
already used it for building surrogate models. He recognizes
2 advantages: low development efforts and modeling with no
assumptions. This paper suggest other advantage: it offers
solutions that are interpretable; that means we can analyze
the surrogate model and get better insight into the problem.

3. NUMERICAL EXPERIMENTS
Three study cases will be done. Surrogate models for two

functions (Branin Function and Rastrigin Function) will be
calculated. Equation (1) is Branin; eq.(2) is Rastrigin.
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The third case is an electromagnetic problem:.the calcu-
lation of Forward Gain by a method of moments (MoM)
simulation of a Yagi antenna with 4 elements, using the Nu-
merical Electromagnetics Code 2 (nec2). The antenna is 6
m above a perfect electric conductor (PEC) ground. The
elements’ length are x1,x2,x3,x4 ∈ [0.2, 0.4] m; the distances
between elements are x5,x6,x7 ∈ [0.1, 0.2] m. The geometry
of the antenna is depicted in fig.1. The driven element is the
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Table 1: Comparison for surrogate Rastrigin against
test set of 64000 samples

Set MAE RMSE
ANN SR ANN SR

1 11.10367 5.93×10−6 13.70285 7.36×10−6

2 11.38934 16.6×10−6 14.14982 20.7×10−6

3 11.54664 6.13×10−6 14.30546 7.60×10−6

4 11.15623 8.92×10−6 13.78459 11.1×10−6

5 11.92689 8.96×10−6 14.80023 11.2×10−6

6 11.72848 2.90×10−6 14.54511 3.60×10−6

7 11.29536 5.93×10−6 14.06576 7.36×10−6

8 11.00931 5.80×10−6 13.63077 7.21×10−6

9 12.42965 20.0×10−6 15.58501 24.9×10−6

10 11.24940 8.81×10−6 13.95887 10.9×10−6

Table 2: Coefficients for Yagi’s SR model
Cf. Value Cf. Value Cf. Value
c1 19.420713 c9 34.592365 c2 0.74041718
d1 9.6399803 c3 30.241159 d2 16.280024
c4 2.9810262 d3 7.9505529 c5 4.0442653
d4 5.8341556 c6 28.972141 d5 74.196007
c7 44.467743 d6 14.458252 c8 2.5384953

second starting from the left. There is a support beam 0.01
m below the elements. Material is aluminium with con-
ductivity= 3.72 × 107S/m. The objective is to maximize
Forward Gain for frequency f = 435 Mhz.

Samples of the search space will be generated with latin
hypercube. For each test function, 10 different sets of ran-
dom points (samples) will be created, and for each set 1
surrogate model using ANNs and 1 using SR via GP will be
obtained. For Branin, 100 samples per set are used, and for
Rastrigin 216 samples. For Yagi, only 1 set of 300 samples
will be created. For each set, NM different models will be
built (NM=12 for test functions, NM=100 for Yagi), with
different (random) initial conditions for ANN training, and
the best model is chosen; “best” meaning the model with
the largest R2. For each set, 70% of points will be used for
training, 15% for validation. A two-layer feed-forward net-
work with sigmoid hidden neurons and linear output neu-
rons, trained with Levenberg-Marquardt algorithm, is used.
For Branin, there are 2 neurons on input layer, 12 on hidden
layer and 1 on output. For Rastrigin, it is 3, 12 and 1. For
Yagi, it is 7, 20 and 1. The symbolic regression models for
the test functions are calculated after 2 × 106 generations,
and for the Yagi problem after 2× 106 generations. Eureqa
[3] is used, running in parallel on 4 cores of Intel Xeon X3430
with 256 individuals in population; 70% of points are used
for training, and the remaining 30% are used for validation.
The alphabet chosen are constants, +, -, *, /, exp(), log(),
sin() and cos(). Then, after having calculated the surrogate
models, they will be used on M random points in the search
space (M=10000 for Branin and Yagi, M=64000 for Rastri-
gin) and compare true values against predicted values. Mean
absolute error (MAE) and root mean square error (RMSE)
are used as criteria of comparison.

The results for Branin shown that ANN is superior to SR
in 70% of the sets. Table 1 shows MAE and RMSE metrics
for Rastrigin. Here, SR is superior to ANN. For the Yagi
problem, the regression using SR via GP was done in two
stages: the first stage gets a first approximation ŷ1 for the
Forward Gain; then Δy = Gain − ŷ1 is obtained and a SR

Table 3: Comparison for surrogate Yagi model
Set Model R2 MAE RMSE

Testing set ANN 0.62957 1.81097 2.38158
(10000 samples) SR 0.79957 1.28872 1.75186

model ŷ2 for Δy is evolved. The final model ŷ = ŷ1 + ŷ2
approximates the forward gain. The evolved functions are
shown in eqs. (3)-(4), and the coefficients for these equations
are presented in table 2.

ŷ1 =
cos(c7x3)

c8x6
+
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+c1 + c5sin(c6x1)− c9x3

(3)
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Table 3 shows all metrics for both ANN and SR mod-
els. The test againts the 10000 random samples indicates
that SR is better than ANN. Knowing that ∇ŷ = 0 for the
maxima and minima:

∂ŷ/∂x5 = −(c2 − sin(c3x1)− c4x4)/x
2
5 = 0 (5)

∂ŷ/∂x6 = −cos(c7x3)/c8x
2
6 = 0 (6)

According eq.(6), in the region of interest there are 3 pos-
sible values of x3, {0.2472708, 0.3179196, 0.3885684}. Fol-
lowing eq.(5), thre is a curve obeying sin(c3x1) = c2 − c4x4.
For each value of x1 there is only one possible value of x5,
according to ∂ŷ

∂x1
= 0. According to ∂ŷ

∂x3
= 0, for each

combination of variables (x3, x4) there is only one possible
x6. Therefore, allowing for some errors, the search space
can be reduced from the original 7-D cube of size = 0.27

into 5-D and 6-D regions. After running 1600 numerical
models in those areas, a candidate maximum was found in
x =(0.3172737, 0.2499185, 0.3080215, 0.3047194, 0.2611489,
0.10451, 0.2310036), with Forward Gain=17.16 dBi. It is
very close to the best Forward Gain =17.25 dBi found be-
tween the 10000 random samples.

4. CONCLUSIONS
In this paper, an empirical comparison between ANN and

SR via GP for surrogate modeling has been presented. Two
main advantages of this approach were shown here: the abil-
ity to exploit the function obtained by SR as a “white box”,
amenable to analysis by calculus (in the Yagi problem, this
analysis helps to reduce the search space), and good accu-
racy (competitive with ANNs).
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