
Intrinsic Evolvable Hardware for Combinatorial Synthesis
Based on SoC+FPGA and GPU Platforms

Carlos Camargo Bareño
Universidad Nacional

cicamargoba@unal.edu.co

Cesar Pedraza Bonilla
Universidad Santo Tomás

cesarpedraza@usantotomas.edu.co
Luis Fernando Niño
Universidad Nacional

lfninov@unal.edu.co

Jose Martinez Torre
Universidad Rey Juan Carlos

joseignacio.martinez@urjc.es

ABSTRACT
This paper presents a novel a parallel genetic programming
(PGP) boolean synthesis implementation on a low cost clus-
ter of an embedded open platform called SIE. Some tasks
of the PGP have been accelerated through a hardware co-
processor called FCU, that allows to evaluate individuals
onchip as intrinsic evolution. Results have been compared
with GPU and HPC implementations, resulting in speedup
values up to approximately 2 and 180 respectively.

Categories and Subject Descriptors
B.5.2 [Hardware]: R-T-L implementation—optimization

General Terms
Design, Performance

Keywords
Hardware copyleft, Evolutionary, boolean synthesis

1. INTRODUCTION
As an alternative to the traditional design of combinato-

rial circuits, some authors have proposed bio-inspired tech-
niques to create combinatorial circuits that can not be ob-
tained with the traditional methods and to add some re-
strictions to the design such as delay, area, etcetc, [5, 1,
4]. One of the main problems to create circuits by using
these techniques is the response time, due the high com-
putational requirements. In order to use parallel genetic
programming (PGP), an FPGA cluster-based architecture
to solve the combinatorial synthesis problem on-chip has
been developed. The fitness coprocessor unit (FCU) on each
FPGA helps to accelerate the convergence of the algorithm,
as well as provide an appropriate support for 12-variable
synthesis problems. The success of the system is mainly due
to the capability of evaluating a chromosome in the FPGA
through a virtual LUT-oriented architecture without using
partial reconfiguration techniques, and determining the fit-
ness value for an individual faster than other related works.
The copyleft hardware project SIE [2] [3] created by our
team work, is composed of a custom embeddded platform

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

and a software development kit based on Linux operating
system; allowing the generation of commercial applications
under the Creative Commons BY-SA licenses, which allows
the distribution and modificacion of the design.

2. GP IMPLEMENTATION
HPC and SIE: The GP was implemented in SIE, a

Graphics Processing Unit (GPU) and on ALTAMIRA (High
Performance Computer). The GP was implemented in two
stages: the first one is about software development and its
parallelization on HPC and GPUs, and the second one refers
to a hardware implementation to speed it up on the SIE
plataform. Using the island approach, the population is di-
vided into sub-populations that will evolve in each processor
of the cluster or parallel architecture, making data migration
to accelerate convergence.

GPU: In the GPU platform a function called kernel −
GP is executed on each processing element that evolves a
sub-population of the GP. Additionally, a Mersenne-twister
algorithm is executed on the GPU before the kernel − GP
to make a buffer of random numbers on its own global mem-
ory. A thread t generates a µ-population, performs the GP
operators during P generations required. M best individu-
als will be transferred to the global memory and then to the
host device (CPU system).

A profiling determined that the most costs were the fit-
ness function calculation and the new individual generation.
They have been accelerated with a dedicated hardware in
the FPGA (FCU). Inside (figure 1), the chromosome cells are
converted to an equivalent Virtual Look Up Table (VLUT)
with a ROM based translation, in order to calculate of wrong
minterms compared to the objective function. Also, the
FCU calculates the final fitness value including the number
of gates and the critical path. In order to speed up pseudo
random number generation, a Mersenne-Twister-based co-
processor was inserted through the same custom interface.

3. PERFORMANCE EVALUATION.
SIE performance was compared to HPC (512 processors)

and GPU (192 CUDA cores). The response time is measured
in three scenarios: 1) number of input variables correspond-
ing to a comparator problem of 2, 4 and 6 bits; 2) population
size and 3) number of nodes running the experiment, ranged
from 1 to 6 in SIE, and 2 to 16 or 64 in ALTAMIRA. The
first and second parameters determine the size of the prob-
lem.

189

Memory
Controller

Registers
Controller

Local
Memory

Registers

Mersenne-
twister
generator

Chromosome Objective
function

LUT
ROM

Critical
path

calculation

Minterms
Calculation

Gates
calculation

Fitness
calculation

Fitness calculation

JZ2745
Processor

FCU

P
ro
ce
ss
o
r
In
te
rf
ac
e

SDRAM
(O.S. +

Population)

USB
Device

Figure 1: FCU structure.

Response Time: Figure 2(a) shows the response time for
both platforms with different numbers of nodes and variables
with 1024 individuals during 100 generations. These results
show the high performance of SIE cluster. This experiment
demonstrates that the response time for SIE does not depend
on the size of the problem. In contrast, response time in AL-
TAMIRA has a high dependency of the size of the problem,
because individuals had to be evaluated by software. Fig-
ure 2(b) shows the response time in both architectures when
varying the number of individuals of the population. It is
observed that both architectures have a strong dependency
of the number of individuals. This is because increasing this
number causes an increment of the software computational
load for both clusters. Even in this scenario, SIE shows an
excellent performance compared to ALTAMIRA. Figure 2(c)
shows the response time of executing the GP in the graphics
hardware with problems of 4, 8 and 12 variables. Varying
the number of islands and threads, can be observed that
the best scenario is obtained when the number of threads
is increased independently the number of islands. This is
because when more threads are launched more parallelism
is performed in the system, until the maximum of threads
permitted by the GPUs is reached. The speedup of the SIE
vs ALTAMIRA was up to 180 for 12-variable problems. The
excellent performance of SIE can be explained because in-
dividuals have been directly tested in hardware (FPGA),
obtaining a combination of their true table on each cycle of
the system clock. On the other hand, individuals evaluated
in software by ALTAMIRA require a lot of system clocks,
causing response times hundreds of times higher than SIE.
On the other hand, the speedup number when SIE and GPU
are compared was up to 2 for 12-variable problems. This can
be explained because the whole population have been tested
in hardware, obtaining a combination of their output on each
cycle of the system clock. But, when an individual is tested
in software, each combination requires a set of instructions,
that requires a lot of cycles of the system clock.

4. CONCLUSIONS AND FUTURE WORK.
This paper presented a novel way to evaluate individuals

in an intrinsic evolvable algorithm on an open embedded
platform, and results were compared to an HPC called AL-
TAMIRA and a high performance NVIDIA GPU. To acceler-
ate the evolution process, a coprocessor was implemented to
calculate the fitness function and to generate random num-
bers, improving the performance for problems with more
than 6 bits. Results showed a speedup of 2 when SIE was
compared to GPU (192 processors). When compared with
ALTAMIRA, SIE showed a speedup up to 180; significant
speedup were obtained due individuals have been directly

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70

R
es

po
ns

e
tim

e
SI

E
[s

]

R
es

po
ns

e
tim

e
AL

TA
M

IR
A

[s
]

SIE Nodes

Response time with 1024 individuals

ALTAMIRA Nodes

SIE 4 variables
SIE 8 variables

SIE 12 variables
ALTAMIRA 4 variables
ALTAMIRA 8 variables

ALTAMIRA 12 variables

(a) SIE vs ALTAMIRA.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 6 8 10 12 14 16

R
es

po
ns

e
tim

e
SI

E
[s

]

R
es

po
ns

e
tim

e
AL

TA
M

IR
A

[s
]

SIE Nodes

Response time for 12 variables

ALTAMIRA Nodes

SIE 512 individuals
SIE 1024 individuals
SIE 2048 individuals

ALTAMIRA 512 individuals
ALTAMIRA 1024 individuals
ALTAMIRA 2048 individuals

(b) SIE vs ALTAMIRA.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

R
es

po
ns

e
tim

e
SI

E
[s

]

R
es

po
ns

e
tim

e
G

PU
 [s

]

SIE Nodes

Response time with 1024 individuals

GPU threads

SIE 4 variables
SIE 8 variables

SIE 12 variables
GPU 4 variables
GPU 8 variables

GPU 12 variables

(c) SIE vs GPU.

Figure 2: Response time comparison SIE, AL-
TAMIRA, GPU

tested in hardware. Tests proved that the algorithm is more
effective for 4-bit and 8-bit problems. 12-bit problems in SIE
had excellent performance, but because the search space is
too long, converging to a suitable solution was difficult for
the algorithm. This problem could be solved as future work
with some improvements in terms of multiple FCUs inside
an FPGA, more nodes, and other hardware-accelerated ge-
netic operators.

5. REFERENCES
[1] A Aguirre, C Coello, and B Buckles. A genetic

programming approach to logic function synthesis by
means of multiplexers. Proc. of the I NASA/DoD
Workshop on Evolvable hardware., pages 46 – 53, 1999.

[2] C. Camargo. Hardware copyleft como Herramienta para
la Enseñanza de Sistemas Embebidos. Congreso
Argentino de Sistemas Embebidos CASE 2011, Buenos
Aires Argentina, March 2011.

[3] C. Camargo. Metodoloǵıa Para la Transferencia
Tecnológica en la Industria Electrónica Basada en
Software Libre y Hardware Copyleft. XVII Workshop
de Iberchip, Bogotá Colombia, February 2011.

[4] CAC Coello, RL Zavala, and BM Garcia. Ant colony
system for the design of combinational logic circuits.
Lecture Notes in Computer Science, pages 21–30, 2000.

[5] I Kajitani, T Hoshino, M Iwata, and T Higuchi.
Variable length chromosome ga for evolvable hardware.
Evolutionary Computation, pages 443 – 447, Jan 1996.

190

