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ABSTRACT 
Genetic transposition is a process of moving sequences of DNA to 
different positions within the genome of a single cell. Inspired by 
the role of genetic transposons in biology, we introduce a genetic 
transposition inspired mechanism in genetic programming (GP). 
This mechanism, a simple variation from seeding in incremental 
evolution, provides a more effective approach to the evolution of 
systems with multiple features.  

Categories and Subject Descriptors 
[Artificial Life/Robotics/Evolvable Hardware] 

General Terms: 
Algorithms, Design, Reliability, Experimentation. 

Keywords 
Genetic transposition, seeding, genetic programming, Snakebot 

1. INTRODUCTION 
Discovered by Barbara McClintock in maize, the transposons are 
sequences of DNA that can move around to different positions 
within the genome of a single cell, in a mechanism called 
transposition [1]. In the process, they can cause mutations and 
change the amount of DNA. It is recognized that the transposons 
facilitate the evolution of increasingly complex forms of life by 
providing the creative playground for fast mutations where the 
latter could experiment with developing novel genetic structures 
without damaging the already well-functioning genome [4].  

In this paper we propose a new approach to incremental 
evolution by seeding. Inspired by genetic transposition, we use the 
seed to create only part of a new individual. We speculate that it 
might be more efficient to evolve partial solutions to a target 
system and later on incrementally join these solutions to form a 
complete system. The proposed mechanism of incorporation of 
multiple features is based on seeding the initial population of GP 
via genetic transposition (GT). Using GT, the seed (a partial 
solution) does not form the whole genome of an individual, but 
only part of it. We believe that, similar to the nature, the latter 
would offer the opportunity to preserve the genetic makeup of the 
already well-functioning features intact, while incrementally 
“upgrading” it with the coevolution of the new abilities. 

 Seeding of the initial population by means of including the 
previously evolved successful (or partially successful) solutions 
has been shown to be an effective way of improving the efficiency 

of simulated evolution. For example, Nolfi et al. [3] evolve the 
controller of simulated robot and then re-evolve the obtained 
results on real robots to accelerate the evolutionary process.  

The main inspiration of our work was the incorporation of 
new features to the sidewinding Snakebots [6]. In an earlier work 
it was observed that the direct evolution of sensing and fast 
moving Snakebots was much more challenging than the evolution 
of fast moving Snakebots with no sensing abilities. It was also 
observed that the evolved Snakebots with sensory abilities exhibit 
locomotion traits that are pertinent to the sensorless locomotion.  

From another perspective, our work is inspired by the 
discoveries in the neurobiology suggesting that the complex 
navigation behaviors of species in nature can be achieved through 
an appropriate real-time modulation, controlled by the sensory 
inputs, of the generic neural signals produced by sensorless 
central pattern generators (CPG) [2]. Within this context, we 
would like to investigate whether (i) the separation of the 
genotype into two parts, mimicking the natural CPG and its 
modulation via sensory processing, respectively, and (ii) evolving 
these two parts in two consecutive stages would contribute to the 
improvement of the efficiency of evolution of the Snakebot.  

The remaining of this document is organized as follows. 
Section 2 provides a brief explanation of GT. Section 3 discusses 
the experimental results, and Section 4 draws the conclusions. 
 
 

 

 

 

 

    
 

 

 

 

 

 

 

 

    

 
 
 
Figure 1: The initial and final forms of GP trees when three of 
the different evolution approaches described are used. 
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2. GENETIC TRANSPOSITION IN GP 
Incremental evolution has been shown to improve the efficiency 
of simulated evolution, and as well as improving existing 
solutions, incremental evolution has been applied to improve the 
performance of evolution in finding solutions from scratch. A 
technique, termed by Perry as “population enrichment” [5], has 
been demonstrated to be more efficient in discovering solutions in 
GP (than canonical GP).  “Population enrichment” is a form of 
seeding that is closest to GT. The main difference in these 
methods is the form of initialization, where in the “population 
enrichment” the seed is a complete individual (see Stage 2a in 
Figure 1), while in the proposed GT the seeded genotype only 
forms a part of the genetic makeup of a newly created individual 
in the initial evolutionary population (see Stage 2b in Figure 1). 

The implementation of GT (Stage 2b) along with canonical 
GP (Stage 1) and GP with classical seeding (Stage 2a) is shown in 
Figure 1.  Both GT and classical seeding need to make use of a 
preliminary seed, and in our case this seed comes from a 
previously evolved partial solution (Stage 1). 

3. EXPERIMENTS 
The Snakebot is evolved applying three different evolutionary 
approaches: (i) Canonical GP (single stage approach), (ii) Typical 
seeding (two-staged approach), and (iii) Genetic transposition 
(two-staged approach). The experimental conditions are as 
detailed in [6]. For each approach we executed 16 independent 
runs.  The experimental environment and the trajectory of a 
sample best-of-run Snakebot can be seen in Figure 2.   

The experimental environment (Figure 2) is formed of a 
straight narrow corridor (the width is the same as the length of the 
Snakebot) that has two groups of tall boxes that protrude to about 
40% of the width of the corridor. In addition, part of the corridor 
is covered by many, randomly located and sized, small boxes that 
are designed to create a rough terrain and noisy environment for 
the sensors. The length of the corridor is set to seven times the 
length of the Snakebot. Starting from one end of the corridor, the 
aim of the bot is to reach the other end within the given time-span. 
 
  
 
 
 
 
 
 
Figure 2: The moving trajectory of the central segment and 
the center of gravity (COG) of a sample best-of run Snakebot, 
evolved by incremental GP with GT. 
 
The results (summarized in Table 1) demonstrate the increase in 
the efficiency of GP when incremental evolution techniques are 
used. Futhermore, the GT mechanism is shown to drastically 
increase the effectiveness of GP in finding successful solutions. 
The efficiency of GP is improved by more than 8 fold when GT is 
used in comparison to classical seeding. 

We speculate that the proposed approach allows the evolution 
to experiment with the way of processing the sensory signals 
without the risk of damaging the already evolved, fast locomotion 
control. Therefore, GT could facilitate the protection of the 
already evolved beneficial building blocks from destructive 
genetic operations. Conversely, since the locomotion control 

comprises 100% of the genotype of the bots created via typical 
seeding, any incorporation of the sensing information as a result 
of a genetic operation would most likely damage this control. 

Our results can be seen as an evidence of the computational 
benefits of mimicking the neurobiological concept of achieving 
complex navigation behaviors through sensory-controlled 
modulation of CPG. The moving trajectory of a sample best of run 
bot (Figure 2) illustrates the emergence of the following abilities 
of the bot: (i) fast locomotion (clearing the corridor), that is (ii) 
not hindered by rugged terrain (overcoming small boxes), (iii) 
following obstacles that cannot be overcome (walls), and (iv) 
circumnavigating obstacles that cannot be overcome (tall boxes). 

 
Table 1:  Statistics of the experimental results. 

4. CONCLUSION 
The evolution of a modular sidewinding Snakebot in a 
challenging environment with multiple forms of obstacles is a 
demanding task. It was shown that by dividing the task into two 
subtasks, implemented as two consecutive evolutionary stages, 
can significantly improve the evolutionary performance. 

A biologically inspired technique, GT, was introduced to 
further improve the evolutionary process. It was shown that GT 
offered a significant improvement over typical seeding when 
applied to the evolution of an actively sensing and fast moving 
Snakebot. The experimental results demonstrate that when GT is 
used the evolution of a fast sidewinding Snakebot with obstacle 
avoidance properties becomes more reliable and less time-
consuming. The presented technique serves as a new approach to 
incremental evolution of multiobjective problems.       
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