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ABSTRACT

We present a study of dynamic environments with genetic
programming to ascertain if a dynamic environment can
speed up evolution when compared to an equivalent static
environment. We present an analysis of the types of dy-
namic variation which can occur with a variable-length rep-
resentation such as adopted in genetic programming identi-
fying modular varying, structural varying and incremental
varying goals. An empirical investigation comparing these
three types of varying goals on dynamic symbolic regres-
sion benchmarks reveals an advantage for goals which vary
in terms of increasing structural complexity. This provides
evidence to support the added difficulty variable length rep-
resentations incur due to their requirement to search struc-
tural and parametric space concurrently, and how directing
search through varying structural goals with increasing com-
plexity can speed up search with genetic programming.

Categories and Subject Descriptors

I [Computing Methodologies]; 1.2 [Artificial Intelli-
gencel; 1.2.2 [Automatic Programming]

General Terms

Algorithms, Experimentation

Keywords

dynamic environments, genetic programming, modular vary-
ing goals, structural varying goals

1. INTRODUCTION

The application of genetic programming (GP) to dynamic
environments is an open issue in the field, which has received
increasing attention in recent years [11, 2] and has received
greater attention in the broader evolutionary computation
community (e.g., see [1, 8, 12]). A recent study by life sci-
entists [5], which used genetic algorithms to simulate evo-
lutionary processes, discovered that operating in a dynamic
environment can facilitate and speed up evolutionary search
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when adopting a more traditional GA-like representation on
boolean landscapes. Speed ups were particularly evident in
environments which contained varying goals.

In this study we examine whether or not varying goals
(i.e., a dynamic environment) can speed up evolution with
genetic programming. Given the variable-length nature of a
GP representation our algorithms must be capable of search-
ing both structural and parametric (content) space of a solu-
tion concurrently. To study varying goals with GP we must,
therefore, consider that goals can vary in both a structural
and parametric manner. This is a significant distinguishing
novelty of this study over earlier research [5] which focused
on fixed-length representations and did not consider the im-
pact of structural variation of goals.

2. VARYING GOAL TYPES IN GP

When one thinks of dynamic environments in the context
of problem solving search algorithms, one tends to consider
these types of environments as posing an additional chal-
lenge above and beyond static problems [1, 8, 2]. A recent
study by life scientists has turned this idea on its head by
demonstrating that, under certain circumstances, dynamic
environments can actually help evolutionary search find so-
lutions more rapidly than in an equivalent static environ-
ment [5]. In this paper we wish to examine if these findings
translate to evolutionary computation and in particular GP.

When facing a dynamic (or even static) problem with
GP one faces the additional burden of having to concur-
rently search both structural and parametric space over fixed
length representations such as the classic genetic algorithm
(GA) [4, 3]. A search of structural space, and therefore a
variable-length representation, is necessary in GP as we do
not know the size or topology of the solution when setting
out to tackle a problem [6]. A parametric search is con-
ducted in GP concurrently to structural search, as to suc-
ceed the algorithm must “optimise” the parameters of the
evolving GP trees or instructions. For example, the optimal
value or content of each node in a GP tree must be found
for the “optimal” structure.

The earlier research by Kashtan et al. [5] on the speed up
varying environments can bring, conducted simulations us-
ing a “GA-like”, fixed-length representation. To extend this
research to GP we therefore need to consider how goals can
also vary in terms of structure to account for the variable-



length representation of GP. Kashtan et al. [5] found that
speed ups in evolution are most likely to occur for a special
type of varying goal, termed modular varying goals (MVG’s).
A modular varying goal is defined such that

“..each new goal shares some of the subproblems with the
previous goal...”. [5]

To account for the structural search space of GP we define
a structural varying goal (SVG) in terms of the Kashtan et
al. [5] definition of an MVG. Therefore, we define an SVG
such that

“Fach new goal shares some of the subproblems with the pre-
vious goal, with the new goal containing a different number
of subproblems from the previous goal.”.

3. EXPERIMENTAL SETUP

In this study a grammar-based form of genetic program-
ming [7], Grammatical Evolution [10, 2], is employed. The
evolutionary parameters adopted were, a population size
of 100 running for 150 generations. A generational algo-
rithm with elitism of 25% of the total population size is
employed with tournament selection with a tournament size
of 10% of the population. The probability of standard GE
ripple crossover is 0.9, and integer mutation is 0.01. A
ramped-half-and-half approach to initialisation is adopted
with a maximum derivation tree initialisation depth limit
of 15. Wrapping is not employed. The investigations are
conducted using two dynamic benchmark symbolic regres-
sion problems with the primary target in each case being
z+a? it 42’ + 28 42" 428 and 0.3z x sin(2x T xx).
Further details on the experimental setup are available [9].

4. RESULTS

We wish to 1) ascertain if dynamic environments can speed
up evolution with GP, and 2) to determine the relative im-
portance of the structural versus modular varying goals.
Examining the results we observe differences in behaviour
between setups adopting varying goals and the static envi-
ronment. It is worth highlighting the fact on both problems
the most significant difference in performance is observed
when the structural varying goals are incremental in struc-
tural complexity, starting from structurally simpler variants
of the primary target to increasingly more complex struc-
tures. The results suggest that 1) it is possible to achieve
speed up in evolution with GP when a dynamic environment
is employed, and 2) the most likely form of varying goal to
lead to a speed up with GP is where the goals are struc-
turally varying in an manner such that their complexity is
increasing over evolutionary time.

A more detailed exposition of the results is available [9].

S. CONCLUSIONS & FUTURE WORK

We presented a study on the utility of varying goals with
genetic programming for symbolic regression to determine
if they might be able to result in a speed up in evolution
when compared to a static environment. Given the variable-
length nature of a genetic programming representation our
algorithms must be capable of searching both structural and
parametric space of a solution. As such we explicitly con-
sidered modular varying goals (MVG’s) and in addition in-
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troduced the concept of structural varying goals (SVG’s).
We then empirically investigated whether varying goals can
speed up GP evolution, and analysed the relative impor-
tance of MVG’s, SVG’s and a special case of SVG’s where
the goals increase in structural complexity over evolutionary
time. It was observed that the adoption of a seemingly more
challenging dynamic environment with genetic programming
can lead to improved performance both in terms of the qual-
ity and speed with which solutions are found.
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