
A New Approach for Generating Numerical Constants in
Grammatical Evolution

[Extended Abstract]

Douglas A. Augusto
LNCC/MCT

Petrópolis, RJ, Brazil
douglas@lncc.br

Helio J.C. Barbosa
LNCC/MCT & DCC/UFJF

Petrópolis, RJ, Brazil
hcbm@lncc.br

André M.S. Barreto
LNCC/MCT

Petrópolis, RJ, Brazil
amsb@lncc.br

Heder S. Bernardino
LNCC/MCT

Petrópolis, RJ, Brazil
hedersb@lncc.br

ABSTRACT

A new approach for numerical-constant generation in Gram-
matical Evolution is presented. Experiments comparing our
method with the three most popular methods for constant
creation are performed. By varying the number of bits to
represent a constant, we can increase our method’s preci-
sion to the desired level of accuracy, overcoming by a large
margin the other approaches.

Categories and Subject Descriptors

I.2.0 [Computing Methodologies]: [Artificial Intelligence,
General]; I.2.2 [Automatic Programming]: [Program
synthesis]

General Terms

Algorithms, Experimentation

Keywords

Constant Creation, Grammatical Evolution

1. INTRODUCTION
Grammatical Evolution (GE) is an elegant way of evolving

programs where candidate solutions are binary strings which
encode programs through a user-specified grammar [3].
Regardless of the particular metaheuristic used as the

search engine, the success of any GE method depends cru-
cially on its capability of generating numeric constants within
the programs [3]. In this paper we propose a new approach
for constant handling in GE which we call ephemeral con-

stant. Our method can be seen as a translation of the clas-
sical genetic programming’s ephemeral random constant to
the GE framework. Its most distinctive feature is that it
decouples the number of bits used to encode the grammar’s
production rules from the number of bits used to represent
a constant. This makes it possible to increase the method’s
representational power without incurring in an overly re-
dundant encoding scheme.

2. EVOLVING CONSTANTS IN GE
GE’s binary string encodes an integer array using b bits

(usually b = 8) for each integer i which is then used to select

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

a rule from the grammar via rule = (i mod m), where m
is the number of rules for the current nonterminal. Some
of the most important constant-handling approaches found
in the GE literature are as follows. The original method
for constant handling in GE, here referred to as the tradi-

tional approach and denoted by “trad”, operates by defining
grammatical rules to allow the mathematical manipulation
of single-digit integers (usually between 0 and 9). As a re-
sult, the generation of real values might require the evolution
of complex mathematical expressions. The digit concatena-

tion approach, denoted here by “dc”, was proposed in [2] as
a way to circumvent such difficulty. In this method a numer-
ical constant is generated by the concatenation of decimal
digits (including the dot separator for real values). In the
persistent random constants method, denoted here by “prc”,
real numbers are randomly generated and included in the
production rules at the outset of the search process. This
method is essentially a variation of the traditional approach,
since constants are created through the arithmetic manipu-
lation of a finite number of predefined values.

3. EPHEMERAL CONSTANT
Our method resembles the canonical implementation of

GP’s ephemeral random constant, in which numerical con-
stants are randomly generated and assigned to a program
during its creation [1]. As in GP, the proposed method stores
the constants directly in the program’s genotype but, follow-
ing GE’s representation scheme, they are encoded as strings
of bits rather than as real values. The implementation is
very simple: it only requires the introduction of the produc-
tion rule <constant> ::= ephemeral. The terminal symbol
ephemeral carries a special meaning: whenever it is selected
during the program’s decoding process, the next n bits are
decoded into a real number. Afterwards, the decoding pro-
cess resumes normally past those n decoded bits. There are
two user-defined parameters: the interval [cmin, cmax] into
which the numerical constants will be mapped, and the num-
ber of bits n used to represent each ephemeral constant.

The ephemeral constant method can be seen as a modi-
fication of the persistent random constant technique. The
main improvement of the former with respect to the latter is
the separation between the representation of constants and
production rules. This makes it possible to tune the precision
with which the constants are represented without affecting
the dynamics of the grammar’s decoding process. In princi-
ple one could argue that the same effect could be obtained
with the persistent random constant method. However, in

193

that case the number of bits used to encode the produc-
tion rules would also increase, which could harm the evo-
lutionary process. Besides, since in the persistent random
constant approach the constants must be explicitly enumer-
ated in the grammar, increasing the precision may lead to
practical difficulties. For example, a 32-bit representation
can hold up to 232 constants; using standard double pre-
cision to represent such constants would require 32 giga-
bytes of physical memory. Another difference between the
ephemeral constant method and its precursor is the fact that
in our method the constants are (implicitly) sorted. This
may help the evolutionary search if an appropriate repre-
sentation scheme, such as a Gray code, is adopted. Besides,
the constants used by our approach are evenly distributed
over the interval [cmin, cmax], what makes the underlying GE
algorithm less susceptible to the contingencies inherent to
the persistent random constant’s sampling process.

4. COMPUTATIONAL EXPERIMENTS
Computational experiments were performed to evaluate

the approach proposed above. Four variants of our method
(denoted by “ec”) were analyzed, corresponding to the use
of 8, 16, 24, and 32 bits for constant encoding.
The standard search mechanism adopted for all approaches

was a simple Gray coded genetic algorithm. A hundred in-
dependent runs were performed with the GE parameters set
to: population size 500, chromosome length 800, mutation
rate 1/(chromosome length), one-point crossover with prob-
ability 0.9, tournament selection with two individuals, 500
generations, and each integer encoded in 8 bits.
The objective of the test-problems was to evolve the fol-

lowing real constants: 1.23, 123000, 0.000123, 45.60099,
45600.99, and 0.0004560099. The fitness, to be maximized,
was defined as f(x) = 1/(1+|target−x|). The results, listed
according to increasing mean relative error, are summa-
rized in Table 1, which presents the relative error (|target−
x|/target) and the mean expression size—which was defined
here as the number of arithmetic operators and numerical
constants appearing in the final expression.
From Table 1, it is clear that“dc”presents the best overall

behavior among the proposals from the literature. However,
when considering the mean relative error, it is outperformed
by the proposed “ec-16bits” variant. Also the mean rela-
tive error of the “ec-24bits” and “ec-32bits” variants are even
smaller, as expected. Finally, the results indicate that, as
the number of bits used to encode numerical values in the
“ec” variants increase, the expression size decreases. How-
ever, the “dc” technique produced the shortest expressions.

5. CONCLUSIONS
By dissociating the number of bits used to represent a

constant from the number of bits used to index a production
rule, our new approach provides extra flexibility for constant
handling in GE. The experiments indicate that an increase in
the number of bits used in the constants’ representation in-
creases accuracy, as expected, and reduces the size of the fi-
nal expressions evolved. By increasing our method’s numeric
precision, the alternative approaches are outperformed with
respect to approximation accuracy. As for the complexity
of the final solutions, digit concatenation generates expres-
sions that are slightly simpler than those returned by our
approach.

Method
Relative error (×102) Mean
Mean Min. Max. size

Constant 1.23

ec-32bits 0.000 ± 0.00 0.000 0.000 4.4 ± 2.5

ec-24bits 0.000 ± 0.00 0.000 0.000 4.2 ± 2.8

dc 0.001 ± 0.01 0.000 0.121 2.0 ± 1.2

ec-16bits 0.003 ± 0.01 0.000 0.024 4.3 ± 2.6

ec-8bits 0.048 ± 0.09 0.000 0.693 8.5 ± 6.3

trad 0.089 ± 0.21 0.000 1.626 17.2 ± 8.9

prc 0.150 ± 0.26 0.000 1.293 10.9 ± 8.1

Constant 123000

ec-32bits 0.000 ± 0.00 0.000 0.000 11.0 ± 2.8

ec-16bits 0.000 ± 0.00 0.000 0.001 12.7 ± 4.8

ec-24bits 0.000 ± 0.00 0.000 0.000 11.6 ± 2.9

ec-8bits 0.011 ± 0.04 0.000 0.356 15.2 ± 5.7

prc 0.061 ± 0.15 0.000 1.036 16.4 ± 7.3

trad 0.075 ± 0.11 0.000 0.429 23.1 ± 7.1

dc 0.637 ± 3.23 0.000 18.699 2.2 ± 2.1

Constant 0.000123

ec-32bits 0.000 ± 0.00 0.000 0.000 10.8 ± 3.1

ec-16bits 0.000 ± 0.00 0.000 0.001 11.5 ± 3.9

ec-24bits 0.000 ± 0.00 0.000 0.000 11.4 ± 3.3

dc 0.001 ± 0.01 0.000 0.116 4.0 ± 1.5

prc 0.048 ± 0.14 0.000 1.278 17.3 ± 6.8

ec-8bits 20.012 ± 40.20 0.000 100.000 12.6 ± 8.1

trad 98.029 ± 13.86 0.046 100.000 4.5 ± 7.2

Constant 45.60099

ec-32bits 0.000 ± 0.00 0.000 0.000 1.7 ± 1.9

ec-24bits 0.000 ± 0.00 0.000 0.000 1.8 ± 2.4

dc 0.001 ± 0.00 0.000 0.013 1.4 ± 0.9

ec-16bits 0.001 ± 0.00 0.000 0.001 2.1 ± 3.0

ec-8bits 0.131 ± 0.12 0.000 0.243 5.6 ± 7.3

prc 0.161 ± 0.26 0.000 1.215 10.9 ± 10.5

trad 0.259 ± 0.43 0.000 1.318 17.0 ± 8.7

Constant 45600.99

ec-32bits 0.000 ± 0.00 0.000 0.000 8.9 ± 2.8

ec-16bits 0.000 ± 0.00 0.000 0.001 10.3 ± 3.7

ec-24bits 0.000 ± 0.00 0.000 0.000 10.2 ± 3.8

dc 0.001 ± 0.00 0.000 0.002 1.3 ± 0.9

ec-8bits 0.017 ± 0.03 0.000 0.250 12.6 ± 5.5

prc 0.068 ± 0.17 0.000 1.345 15.9 ± 7.6

trad 0.109 ± 0.17 0.000 0.715 21.3 ± 7.1

Constant 0.0004560099

ec-32bits 0.000 ± 0.00 0.000 0.002 10.5 ± 3.0

ec-16bits 0.000 ± 0.00 0.000 0.001 11.5 ± 3.6

ec-24bits 0.000 ± 0.00 0.000 0.000 10.8 ± 3.0

dc 0.002 ± 0.01 0.000 0.093 3.9 ± 1.5

prc 0.078 ± 0.27 0.000 2.572 18.2 ± 8.2

ec-8bits 11.018 ± 31.44 0.000 100.000 13.4 ± 7.4

trad 92.027 ± 27.17 0.000 100.000 5.9 ± 9.0

Table 1: Results

Of course, more experimentation is needed to verify whether
our method will outperform its counterparts when more
complex solutions are to be evolved.

6. ACKNOWLEDGMENTS
The authors thanks the support from CAPES, CNPq

(308317/2009-2) and FAPERJ (grants E-26/102.825/2008,
E-26/102.025/2009 and E-26/100.308/2010).

7. REFERENCES
[1] J. R. Koza. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. MIT Press, 1992.

[2] M. O’Neill, I. Dempsey, A. Brabazon, and C. Ryan.
Analysis of a digit concatenation approach to constant
creation. In Proc. of the European Conference on

Genetic Programming, pages 173–182. Springer, 2003.

[3] M. O’Neill and C. Ryan. Grammatical evolution. IEEE
Trans. Evol. Comput., 5(4):349–358, 2001.

194

