
Stateful Program Representations
for Evolving Technical Trading Rules

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon
Financial Mathematics and Computation Research Cluster

Natural Computing Research and Applications Group
University College Dublin, Ireland

{alexandros.agapitos, m.oneill, anthony.brabazon}@ucd.ie

ABSTRACT
A family of stateful program representations in grammar-
based Genetic Programming are being compared against
their stateless counterpart in the problem of binary clas-
sification of sequences of daily prices of a financial asset.
Empirical results suggest that stateful classifiers learn as
fast as stateless ones but generalise better to unseen data,
rendering this form of program representation strongly ap-
pealing to the automatic programming of technical trading
rules.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming

General Terms
Algorithms, Performance, Experimentation

Keywords
Stateful Program Representations, Memory in Genetic Pro-
gramming, Evolution of Technical Trading Rules, Classifica-
tion of Financial Time-series

1. INTRODUCTION
This paper presents an empirical study of sequence classi-

fication via stateful Genetic Programming (GP). The binary
classification task considers the issuing of go-long or go-short
commands in a financial trading system. Technical analysis
is employed to extract features [3] from the raw time-series of
daily prices of a financial asset. These indicators are used as
building blocks during the evolutionary synthesis, by means
of grammar-based GP, of binary classification decision-trees
for the financial time-series. Time-series processing is being
performed using a single-step moving-window approach, and
a classification is obtained for each time-step. The program
space, where GP operates, contains programs that are al-
lowed to maintain state information [4, 2, 5, 1] in-between
the sequential program execution, given input that is ob-
tained through a number of differing realisations of the tra-
ditional moving-window approach.

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

2. INDEXED MEMORY UTILISATION
Stateful-A is the general case of a state-aware sequence

processing program. Under this formulation of memory us-
age, scalar strongly-typed state variables are initialised to
default values (zero in the case of real-valued variables) prior
to program execution. In each time-step, features are ex-
tracted from the raw time-series and these are fed as input
to the program that returns a binary classification as out-
put. During each execution, a program is allowed to access
and modify a number of state variables. The process essen-
tially utilises a moving time-window of size one that is being
rolled over until the entire time-series has been exhausted.

Stateful-B is a more constrained approach to sequence
processing. A moving time-window (outer window) is being
utilised to produce each classification. This outer window
of recent time-steps is being itself traversed by a moving
time-window of size one (inner window). Prior to a classifi-
cation, state variables are being initialised. Hence, the inner
window is used to iteratively feed the features to each suc-
cessive program execution, which has the ability to inspect
and modify state information. A classification is being pro-
duced at the time-step that signifies the end of the outer
window, the state variables are being initialised, and the
outer window slides one time-step to the right. This process
continues until the whole time-series have been exhausted.

Stateful-C is a memory utilisation method that attempts
to explicitly bias the impact of more recent information on
classification output, while still allowing the program to cap-
ture long-term time dependencies. The method has been de-
signed to achieve this by performing an independent single-
step traversal over the time-steps of a recent time-window
in order to issue a classification output, while allowing for
the state information to be maintained in-between subse-
quent classification outputs. The process resembles that of
Stateful-B, with the difference that the state variables are
only initialised in the beginning of the sequence processing,
and are maintained throughout subsequent program execu-
tions until the whole time-series is exhausted.

Finally, Stateless is the case of a stateless sequence pro-
cessing program. Here, a single time-step moving window
is utilised to traverse the time-series and extract features
that are used to output a classification decision. No state
variables are defined.

3. EVOLVING TRADING RULES
The GP system evolves technical trading rules in the form

of decision-trees. Each expression-tree is collection of if-
then-else rules that are represented as a disjunction of

199



Table 1: Experimental results. Bold face indicates
best performance. Δ denotes the mean percentage
change in ADR between Best and Final, and quan-
tifies the magnitude of overfitting.

Train set Test set
Window Best Gen. Best Gen. Final Δ

Memory utilisation: Stateless
n/a 0.31 48.32 0.07 10.08 -0.02 -148%

Memory utilisation: Stateful-A
n/a 0.30 47.58 0.07 11.72 -0.02 -136%

Memory utilisation: Stateful-B
20 0.27 47.94 0.09 15.08 0.02 -80%
40 0.26 47.72 0.08 10.28 0.01 -262%
60 0.28 47.73 0.09 15.63 0.03 -69%
80 0.28 47.42 0.09 12.60 0.02 -83%
100 0.29 48.19 0.07 9.73 -0.01 -157%

Memory utilisation: Stateful-C
20 0.27 47.76 0.09 11.58 0.03 -73%
40 0.27 48.89 0.08 16.49 0.02 -89%
60 0.27 48.36 0.09 11.59 0.02 -84%
80 0.28 47.97 0.10 12.14 0.03 -75%
100 0.29 47.85 0.07 11.33 -0.05 -212%

conjunctions of constraints on the values of technical indi-
cators [3]. The technical indicators that are used in this
experiment are: (a) simple moving average (MA), (b)
trade break out (TBO), (c) filter (FIL), (d) volatility
(VOL), and momentum (MOM). These are parameterised
with lag periods, which is the number of past time-steps that
each operator is based on. Currently, we allow periods from
5 to 200 trading days, with a step of 5 days. We also include
the closing price of the asset at each trading day.

In order to allow for a program space that enables the rep-
resentation of stateful programs, standard read and write

operators have been defined. read returns the value stored
in memory index address. write sets the value at memory
index address, and returns the value of this memory loca-
tion that has just been overwritten. In addition to those
standard memory-manipulation operators, soft-assignment
operators have been defined. These are updateAdd and
updateMul that are semantically equal to i=i+value, and
i=i*value respectively. Once the memory update has been
performed, the operators return the value at address that
has just been overwritten. The indexed memory is set to
size 10. In the case of stateless program representation, no
indexed memory is being utilised, and the grammar is being
modified to exclude the memory-manipulating primitives.

The GP algorithm employs a panmictic, generational, eli-
tist genetic algorithm. The selection scheme, run initiali-
sation, variation operators, and search size are similar to
the experimental setup in [3]. The maximisation problem
uses a fitness function that takes the form of the Informa-
tion Ratio of daily returns. This is defined as the ratio
of average daily return (ADR) generated by the rule’s trad-
ing signals over a training period, divided by the standard
deviation of these daily returns. The dataset used is a time-
series of daily prices of the Nikkei 225 index for the period
of 01/01/1990 to 31/03/2010. The first 2, 500 trading days
are used for training, whereas the remaining 2, 729 compose
the out-of-sample test set.

4. RESULTS AND CONCLUSION
Stateful representations performed better than their state-

less counterpart. A statistically significant difference (un-

paired t-test, p < 0.0001, df = 98) was found between state-
less (mean ADR of 0.07, mean annualised return of 14%) and
Stateful-C-80 (mean ADR of 0.10, mean annualised return of
20%). Another statistically significant difference (unpaired
t-test, p < 0.0003, df = 98) was found between stateless and
Stateful-B-60 (mean ADR of 0.09, mean annualised return
of 18%). Furthermore, no statistically significant differences
were found between the number of generations required to
evolve the best-generalising programs in both stateful and
stateless cases. Results suggest that the best-generalising in-
dividuals are discovered relatively early in the evolutionary
process, on average before generation 20. After that point,
overiffting becomes apparent in both stateful and stateless
program representations. The level of overfitting, accruing
from continued training till the end of the evolutionary run,
becomes more pronounced in the case of stateless programs.
Results show that the average percentage decrease in ADR
for the case of stateless programs reaches 148%, resulting to
a final mean ADR of -0.02. For the same dataset, stateful
representations Stateful-B-60 and Stateful-C-80 are attain-
ing a performance decrease of only 69% and 75% respec-
tively, resulting in final mean ADR of 0.03 in both cases. In
conclusion, stateful program representations in this problem
domain produced more profitable trading rules, and suffered
less from the problem of overfitting, compared to the state-
less program representation. No differences were found rel-
ative to the speed of evolutionary learning between stateful
and stateless families of program representation.

Acknowledgements
This publication has emanated from research conducted
with the financial support of Science Foundation Ireland un-
der Grant Number 08/SRC/FM1389.

5. REFERENCES
[1] A. Agapitos, M. Dyson, S. M. Lucas, and F. Sepulveda.

Learning to recognise mental activities: genetic
programming of stateful classifiers for brain-computer
interfacing. In GECCO ’08: Proceedings of the 10th
annual conference on Genetic and evolutionary
computation, 2008.

[2] A. Agapitos and S. M. Lucas. Evolving a statistics class
using object oriented evolutionary programming. In
Proc. of 10th European Conference on Genetic
Programming, volume 4445, pages 291–300, 2007.

[3] A. Agapitos, M. O’Neill, and A. Brabazon.
Evolutionary learning of technical trading rules without
data-mining bias. In R. Schaefer, C. Cotta,
J. Kolodziej, and G. Rudolph, editors, PPSN 2010 11th
International Conference on Parallel Problem Solving
From Nature, volume 6238 of Lecture Notes in
Computer Science, pages 294–303, Krakow, Poland,
11-15 Sept. 2010. Springer.

[4] A. Agapitos, J. Togelius, and S. M. Lucas. Evolving
controllers for simulated car racing using object
oriented genetic programming. In Proceedings of the
Genetic and Evolutionay Computation Conference,
2007.

[5] A. Agapitos, J. Togelius, and S. M. Lucas.
Multiobjective techniques for the use of state in genetic
programming applied to simulated car racing. In Proc.
of IEEE CEC, pages 1562–1569, 2007.

200




