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ABSTRACT
Parallel Linear Genetic Programming (PLGP) is an excit-
ing new approach to Linear Genetic Programming (LGP)
which decreases building block disruption and significantly
improves performance by the introduction of a parallel archi-
tecture. We introduce a caching algorithm for PLGP which
exploits this parallel architecture to avoid the majority of
instruction executions. This allows PLGP programs to be
executed an order of magnitude faster than LGP programs
with an equal number of instructions.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithms, Design

Keywords
Genetic Programming, Linear Genetic Programming,
Caching

1. INTRODUCTION
Population based search algorithms such as Genetic Pro-

gramming (GP) are hamstrung by large run times. While
there has been significant improvement in the performance
of GP algorithms, little progress has been made in reduc-
ing GP program execution times. In fact many GP algo-
rithm improvements actually increase algorithm run times
[3], somewhat offsetting the advertised performance benefits.

Caching is one technique commonly used to decrease al-
gorithm run time. Unfortunately conventional forms of GP
are not well suited to caching. The execution of GP program
components is highly contextual: Two identical instruction
subsequences can have completely different executions due
to different positioning within their respective GP programs.

Parallel LGP (PLGP) is an exciting new form of GP intro-
duced by Downey and Zhang in 2011 [2]. The key concept
of PLGP is the adoption of a parallel program architecture,
where each PLGP program consists of several independently
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executed factors. Thus PLGP lacks the contextual informa-
tion which prevents effective caching in LGP, presenting op-
portunities for caching not available in a conventional LGP
system.

2. BACKGROUND
In LGP the individuals in the population are programs

in some imperative programming language. Each program
consists of a number of lines of code, to be executed in se-
quence. The LGP used in this paper follows the ideas of
register machine LGP [1]. In register machine LGP each
individual program is represented by a sequence of register
machine instructions, typically expressed in human-readable
form as C-style code.

PLGP is an extension of LGP where each program consists
of n dissociated factors. Each factor is a short sequence of
instructions identical to a conventional LGP program. To
execute a PLGP program we execute all of its factors in
parallel to produce n result vectors. These result vectors
are then summed to produce the program output.

3. CACHING ALGORITHM
The output of any PLGP program in generation n + 1 is

identical to its output in generation n, with the exception of
a single factor. When program evolution occurs, precisely
one factor is modified. All program factors which were not
modified during evolution will produce identical output to
the previous generation.

We can calculate program output at generation n+1 based
on program output at generation n. Let V m

i be the output
of the i’th factor at the m’th generation and let Sm be the
program output at the m’th generation. Then:

Sm =

n∑
i=1

V m
i =

n−1∑
i=1

V m
i + V m

n (1)

Without loss of generality let Vn be the factor that is modi-
fied in generation m + 1. Then we know factors V1, ..., Vn−1

will evaluate to the same vectors in generation m+1 as they
did in generation m. Hence:

Sm+1 =

n−1∑
i=1

V m
i + V m+1

n

Sm+1 = Sm − V m
n + V m+1

n (2)

In short, we can calculate program output in generation n+
1 by subtracting off the old result vector, and adding the
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new result vector. We refer to this technique as difference
caching.

To execute a PGLP program on a single training example
we require knowledge of three vectors: program output at
generation n, the output of factor fi at generation n, and
the output of factor fi at generation n + 1. The output of
factor fi at generation n + 1 is calculated directly, and the
other two vectors are kept in the cache.

Normal Execution
Program

r[1] =3.1+f1;
r[3] =f2 / r[1];
r[2] =r[1]* r[1];
r[1] =f1 - f1;
r[3]=1 +1.5;
r[2]=0 +0.5;

=

 3.2
0

0.94

 +

0
0
0

 +

 0
0.5
2.5

 =

 3.2
0.5
3.44



Cached Execution
Program

r[3]=1+1.5;
r[2]=0+0.5;

=

 1.7
−1.5
0.94

 −

−1.5
−1.5
0

 +

 0
0.5
2.5

 =

 3.2
0.5
3.44



Figure 1: Contrasting normal PLGP program execution to
cached PLGP program execution. Assume that during the
most recent iteration factor three was selected for evolution.

4. THEORETICAL ANALYSIS
Executing a PLGP program without caching causes every

instruction in every factor to be executed. Therefore if each
program has m factors of length n, then execution without
caching requires O(nm) instruction executions. Executing a
PLGP program with difference caching requires one factor
to be executed. Therefore program execution with caching
requires n instruction executions. Hence difference caching
will save mn−n instruction executions, allowing PLGP pro-
grams to be execute m times faster than LGP programs.

The most important benefit of difference caching is that
the cost of caching is independent of the number of pro-
gram factors. Hence programs with a greater number of
factors will receive a greater benefit from caching. This
is particularly important because it has been shown that
PLGP programs give optimal performance when they have
a large number of factors.

5. RESULTS
Fig. 2 shows that LGP programs execute more rapidly

than PLGP programs of equivalent size, regardless of the
number of factors. Furthermore PLGP program execution
time is proportional to the number of factors: Programs
with more factors execute more slowly.

Fig. 3 shows that cached PLGP programs can be executed
far more rapidly LGP programs of equivalent size. Further-
more the execution time of cached PLGP programs is di-
rectly related to the number of program factors: Programs
with more factors execute more rapidly, while programs with
fewer factors execute more slowly.
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Figure 2: LGP vs. PLGP for various program lengths
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Figure 3: LGP vs. PLGP with difference caching for various
program lengths

6. CONCLUSIONS
By exploiting the parallel architecture of PLGP programs

it is possible to decrease program execution times by more
than an order of magnitude. PLGP programs are composed
of n independent factors. PLGP program execution consists
of executing these factors and summing the result vectors.
By caching program output and factor output from gener-
ation n it is possible to calculate program output in gen-
eration n + 1 as the sum of three vectors. This allows us
to avoid executing the majority of the program factors and
hence allows PLGP programs to be executed an order of
magnitude more rapidly than LGP programs with an equal
number of instructions.
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