
Generalisation in Genetic Programming

William B. Langdon
Dept. of Computer Science, University College London

Gower Street, WC1E 6BT, UK
W.Langdon@cs.uc1.ac.uk

ABSTRACT
GP can evolve large general solutions using a tiny fraction
of possible fitness test sets. Just one test may be enough.

Categories and Subject Descriptor I.2.8 [search]: heuristic
General Terms: Theory

Natural evolution has been applied to computer programs
for twenty years. However GP still lacks rigorous widely
applicable predictive mathematical foundations [1, 6]. We
investigate artificially evolved computer program’s ability to
correctly answer even when neither they nor any of their an-
cestors have seen the problem before. (Cf. “delta evaluation”
[2, 7].)

In Software Engineering it is impossible to test exhaus-
tively. So there is considerable interest in the number of
tests needed and the level of confidence they confer on the
code under test. GP can create software which works even
on examples where it has not been tested but this is taken
for granted. As yet there is no rigorous proof of how well
GP will generalise or why or when randomly assembled com-
puter programs will predict unknown cases. Typically ma-
chine learning assumes that bigger solutions are liable to
over fit the training data, i.e. to not generalise, and use
information theory, regularisation, etc., to reduce the size
of models. However evolution was successful for billions of
years before William of Occam [4].

Figure 1 shows typical evolution of a GP population which
reliably evolves complete solutions to the 11-multiplexor prob-
lem using one eighth of the normal training data. I.e. it cor-
rectly guesses the other 7/8th, yet these correct solutions are
far from parsimonious. The third plot shows the typical evo-
lution of GP on 20-Mux where each individual is only shown
32 tests but bloated programs are evolved which can guess
correctly the other 1 048 544 answers. (The 11-Mux can be
solved with one test. However we did try the 20-Mux with
only one test, and a GP population of up to 4 million, but
the run ran out of power and did not find a general solu-
tion.) Plot 4 shows the 37-Mux can be solved when using
only 1/17th million part of the whole test suite.

As expected in successful evolved populations training and
validation performance is correlated (0.19≤r≤1). What is it
about the multiplexor problems that allows GP to evolve
generalising solutions? They are non-trivial high dimen-
sional deceptive and discrete. They have no parameters

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1077726500200725020105510

T
ru

e
 F

it
n
e
s
s
 o

f
B

e
s
t
in

 P
o

p
 (

p
e

rc
e
n

t)

Generation

11-Mux 11M 256 tests 20/37-Mux

37-Mux

11-Mux 2048 tests
11-Mux 256 tests per run
20-Mux 32 tests per gen

37-Mux 8000 tests per gen

Figure 1: Evolving general multiplexers. 1) conven-
tional GP (all 2048 tests), 2) 256 randomly chosen
tests (11-Mux pops 16 384). 3) 32 unique random
tests (of 1 048 576) 4) 8000 tests (of 1.37 1011) each
gen (pops 262 144). Note “logarithmic” fitness in-
crease is reminiscent of the coupon collector. This
suggests building blocks are equally difficult.

suitable for continuous gradient ascent. GP’s ability to gen-
eralise has been known for some time [3]. How many other
problems shared this ability to generalise? We should cer-
tainly expect problems where evolved programs do not gen-
eralise. Code available via FTP cs.ucl.ac.uk directory ge-

netic/gp-code/gp32cuda.tar.gz [5]. UCL technical report
RN/11/10 investigates further.

[1] H.-G. Beyer and W. Langdon, editors. Foundations of
Genetic Algorithms, Austria, 5-9 Jan 2011. ACM.

[2] T. C. Fogarty, F. Vavak, and P. Cheng. Use of the
genetic algorithm for load balancing of sugar beet
presses. In L. J. Eshelman, ed., ICGA pp617–624, 1995.

[3] W. B. Langdon. GP and Data Structures. Kluwer, 1998.

[4] W. B. Langdon. Was Occam wrong? Blunting Occam’s
razor. BNVKI newsletter, 19(3):56–57, June 2002.

[5] W. B. Langdon. A many threaded CUDA interpreter
for genetic programming. EuroGP 2010, p146–158.

[6] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.

[7] P. Ross, D. Corne, and H.-L. Fang. Improving
evolutionary timetabling with delta evaluation and
directed mutation. In PPSN 94, LNCS 866, pp556–565.

205

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gp32cuda.tar.gz
http://www-typo3.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_Information/RN_11_10.pdf
http://portal.acm.org/citation.cfm?id=1967654&picked=prox
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7514
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2002_occam.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_fogp.html
http://dx.doi.org/10.1007/3-540-58484-6_298

