Biologically Inspired Control of a Simulated Octopus Arm
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ABSTRACT

The aim of this study is to explore a control architecture
that can control a soft and flexible octopus-like arm for an
object reaching task. Inspired by the division of function-
ality between the central and peripheral nervous systems of
a real octopus, we discuss that the important factor of the
control is not to regulate the arm muscles one by one but
rather to control them globally with appropriate timing, and
we propose an architecture equipped with a recurrent neu-
ral network (RNN). By setting the task environment for the
reaching behavior, and training the network with an incre-
mental learning strategy, we evaluate whether the network
is then able to achieve the reaching behavior or not. As a
result, we show that the RNN can successfully achieve the
reaching behavior, exploiting the physical dynamics of the
arm due to the timing-based control.
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1.2.11 [Distributed Artificial Intelligence]: Intelligent agents

General Terms
Design

Keywords
Soft Robotics, Recurrent Neural Network, Octopus

1. INTRODUCTION

How does an octopus control its soft and flexible body?
An octopus has hyper-redundant limbs with a virtually in-
finite number of degrees of freedoms (DOFs), and its move-
ments are significantly sophisticated [1]. From the conven-
tional control perspective, its method of controlling move-
ment is outstanding and far-reaching. Therefore, it has been
an excellent test case to learn how to control a flexible and
soft body [4].
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In a real octopus, it is well known that simplification
strategies have evolved to reduce the number of control pa-
rameters in the movement of its flexible arms. That is, the
functionality is divided between the central nervous system
(CNS) and the peripheral nervous system (PNS). Taking
the reaching behavior as an example, it consists of a bend
propagation along the arm toward the tip in a highly stereo-
typical and invariant way. The bend is always created on
the dorsal side of the arm as the ventral side of the arm
approaches the object. It is well studied that the CNS only
sends an initiation command to the PNS; therefore, almost
all the required control of the arm muscles in the reaching
behavior is handled by the PNS [3]. Accordingly, several
studies have intensively focused on the role of the PNS in
the reaching behavior [5, 6].

In this study, we focus on not only the role of the PNS,
but also the coordination between the CNS and the PNS.
This raises a new challenge. Indeed, due to this control
scheme, the CNS does not have to control the movement
of the muscles one by one, and the PNS mainly drives the
behavior. On the other hand, because of this division of
functionality, the following questions remain unaddressed.
How can the CNS recognize when to apply the command to
the PNS? How can the CNS wait for the bend propagation to
be completed while the PNS is activated? These questions
suggest that we need to consider an additional important
factor in the control, which is timing.

2. MODEL AND RESULTS

A dynamical systems approach is suitable in realizing the
timing-based control. As such, the control architecture is
based on a recurrent neural network (RNN), in combination
with a feed forward network (FFN) (Fig. 1 (b)). The main
body of the RNN controls the angle of the arm base and the
timing to send a signal to the low-level control (PNS). The
accompanying network decides the power of the signal and
the angle that is required to achieve the reaching behavior.
In order to determine the performance of the networks, we
established the reaching tasks by using a physical simulator
of the octopus arm (Fig. 1 (a)). As revealed in octopus
biology, the octopus starts to create a bend on the dorsal
side of its arm and, through the bend propagation, its arm
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Figure 1: (a) Examples of the arm dynamics during the reaching behavior controlled by the networks. (b) Dual network used
in this study. The RNN takes proprioceptive inputs (L‘i7 L, L' : the lengths of the muscles (springs) of the most proximal
compartment of the arm), the current base angle (), and the required base angle (,), and outputs the base angle of the
next timestep (f;,;) and a decision neuron. If the value of the decision neuron goes over 0.5, then the FFN is used. By
regulating the value of the decision neuron, the RNN can achieve a timing-based control. The FFN regulates the required
base angle and the parameter for the activation function, a(t,i) = AC, - {1+ tanh[3(£ —i+10)]}, which represents the PNS,
accordingly to the position of the object, (zo,yo) = (Ro cos 8o, Rosinf,). (c) Success plots of the reaching behavior according
to the position of the object. The left figure shows when AC, and €, are set to random. The middle and right figures show
when they are controlled by our trained networks. We varied the number of nodes of the middle layer of the FFN from 4 to
30 and observed its performances. In each case, the success rates were around 40% and were significantly higher than the
control condition. (d) The plots show the outputs of the FFN (middle layer 30) for 8, (left) and AC, (right) according to
R, — 0,. For 0,, we can clearly see the gradation corresponding to the 6,.

approaches the object from the ventral side. The important Kuba and Dr. Letizia Zullo for their contribution on the
point here is the time it takes for the bend to form. Usually, state of the art in octopus biology. This work was supported
to handle these time lags, they are predefined as a default by the OCTOPUS IP, EU Project FP7-231608.

setting or additional stimuli are sent to externally signal the

time lag. However, our aim is to autonomously control the 4. REFERENCES

time lag in the network. [1] W. M. Kier and K. K. Smith. Tongues, tentacles and
In order to achieve the reaching behavior toward the ob- trunks: the biomechanics of movement in

ject, the networks are required to exploit the physical dy- muscular-hydrostats. Zoological Journal of the Linnean

namics of the arm [2]. For the training of the networks we Society, 83:307-324, 1985.

applied an incremental learning strategy. Unlike the con- [2] R. Pfeifer and C. Scheier. Understanding Intelligence.

ventional supervised learning case, we do not predefine the MIT Press, 1999.

learning sets, but rather collect the learning sets by actually [3] G. Sumbre, Y. Gutfreund, G. Fiorito, T. Flash, and

running the arm. Asa result, networks that can SuCCeSSfully B. Hochner. Control of Octopus arm extension by a

achieve the reaching behavior have been developed (Fig. 1 peripheral motor program. Science, 293:1845-1848,

(a)). We found that networks are regulating the time lag by 2001.

using the relaxation dynamics to the point attractor, and [4] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker.

autonomously switching the point attractors to regulate the Soft robotics: Biological inspiration, state of the art,

base angle of the arm in the internal dynamics. Also, the and future research. Applied Bionics and Biomechanics,

performance of the reaching behavior seems to depend on 5(3):99-117, 2008.

the location of the .object; this means that the netwprks are [5] Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel,

successfully recognizing the dynamics of the arm (Fig. 1 (c) B. Hochner, and T. Flash. Dynamic model of the

(d)). We will present, in detail, the overall model settings,

; - - octopus arm. i. biomechanics of the octopus reaching
the mechanism of internal dynamics that was developed to

movement. Journal of Neurophysiology, 94:1443-1458,

realize the time lag, and the performance of the reaching 2005.
behavior. [6] Y. Yekutieli, R. Sagiv-Zohar, B. Hochner, and
T. Flash. Dynamic model of the octopus arm. ii.
3. ACKNOWLEDGMENTS control of reaching movements. Journal of
The authors would like to acknowledge Dr. Michael J. Neurophysiology, 94:1459-1468, 2005.

22





