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ABSTRACT
This work aims to provide developers of bio-inspired UAV
planners with a methodology to perform a systematic anal-
ysis of the results of their planners and support their algo-
rithm parameter tuning based on this analysis. With that
purpose, we propose to use some generic metrics capable
of dealing with different dominance definitions and others
that consider the final preferences of the experts. We apply
them to a particular problem and show how to use them to
identify the best planners within a big set.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem solving, control
methods and search—heuristic methods, plan execution, for-
mation and generation

General Terms
Algorithms

Keywords
Bio-inspired Algorithms, Multiobjective Optimization, Per-
formance Measures, Parameter Tuning, UAVs

1. PROBLEM OVERVIEW
Unmanned Aerial Vehicles (UAVs) participate in many

types of civil and military tasks, following a path obtained by
an optimization algorithm that takes into account the UAV,
mission and environment constraints and some optimality
criteria (such as minimal path length and mission risk). The
UAV optimal generation problem has already been tackled
with Genetic Algorithms (GA), Particle Swarm Optimiza-
tion (PSO) and Differential Evolution (DE), providing good
results as reported in [?, ?, ?]. However, a comparison of the
performance among these techniques is not trivial, because
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the planners differ in their constraints/optimization criteria
and in the path codification. Moreover, the experts usually
introduce subjective decisions in their multi-objective prob-
lems (such as aggregated weighted sums, priorities, etc) pre-
venting the comparison by means of any Pareto compliant
indicators. This work aims to provide the UAV planning
community with a methodology to analyze the performance
of their multiobjective GA, PSO and DE planners and sup-
port their algorithm tuning. The proposed methodology
uses some metrics that work with any pareto dominance def-
inition while others provide meaningful information related
with the experts preferences.

To illustrate the use of the metrics we use the complex mil-
itary UAV planning problem presented in [?], which is for-
mulated as an optimization problem where the UAV routes
are compactly codified by a list of 3-D points that defines
a spline curve, whose feasibility and optimality is evaluated
according to 10 objective functions. These functions are re-
lated to the UAV physical constraints; the overflown terrain;
and the disposition and characteristics of prohibited flying
zones and probabilistically characterized air defense units.
We rank/sort the trajectories within the heuristics using
non-standard Pareto dominance definition based on prior-
ities and goals proposed in [?], placing the 6 constraints in
the higher priority level and the 4 optimization indexes in
the next two levels. For a more detailed description, see [?].

We apply the metrics to 36 stochastic optimization plan-
ners that modify the values of the 3-D points of the list that
define the splines, accordingly with the selected 10 objective
values, the dominance evaluation method in [?], and the
characteristics of the bio-inspired heuristic they are rooted
in. There are 4 GA planners, based on NSGA-II, that dif-
fer in: the crossover and mutation operators, and the use
of immigrants. We also have 16 PSO planners, based on
OMOPSO, that differ in: the method that selects the global
best, their parameter values, the use of immigrants, and the
mutation operator. Finally, there are 16 DE planners that
differ in: the mutation base vector selection, the mutation
parameter setting, the mutation parameter range, and the
crossover type. All the 36 planners use the non standard
dominance definition of [?].
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(b) First metric
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(c) Second Metric
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(d) Third and Four Metric

Figure 1: Planners Comparison

2. PERFORMANCE METRICS
Due to the inherent stochasticity of the planners, we mea-

sure their performance applying several metrics to the re-
sults obtained in Nr different runs of each planner.
To consider the non-standard Pareto definition, we ap-

ply two metrics based on the weak dominance definition be-
tween two sets of solutions [?]. The first metric, the sta-
tistical front-dominance ranking procedure presented in [?],
measures if the Nr results of algorithm Y are usually (and
statistically) less dominated by the Nr results of algorithm
X. The second one measures the number of times that the
Nr results of algorithm Y dominate the results of algorithm
X, when both are started with the same initial population.
In short, the first lets us identify the planners that, when
initialized with any population, obtain at least as good re-
sults as the others, while the second detects which planners
improve further a given initial population. However, they
only inform about the dominance of their outcomes.

To measure the goodness of the solutions and obtain mean-
ingful metrics for the experts, we also consider their final
preferences. The third metric calculates the number of best
fronts that fulfill the constraints for the Nr results of each
planner. The forth calculates the mean (for the Nr solutions
of each planner) of the path length of the paths finally se-
lected by the expert. Therefore, these metrics let the experts
identify the planners whose solutions they might prefer.

3. RESULTS
To compare the performance of the 36 planners we calcu-

late the values of the metrics for different subsets of plan-
ners over the results obtained with Nr = 50 optimizations
for different UAV missions and graphically represent, as the
examples in Fig. 1 show, the metric results to analyze them
visually. The first metric graphics (Fig. 1b) show when
the algorithm in the Y axis is better (their final solutions
less dominated, white), equivalent (no statistically differ-
ent, gray) or worst (their final solutions more dominated,
black) than the algorithm in the X axis. The second met-
ric graphics (Fig. 1c) show the number of times that the
algorithm in the Y axis dominates the algorithm in the X
axis, by means of a double-colored scale that also shows if
the number of times that algorithm Y dominates algorithm
X is bigger (#Y domX ≥ #XdomY , warm colors) or smaller
(#Y domX < #XdomY , cold colors) than the number of times
that algorithm X dominates algorithm Y. Finally, the last
graphic (Fig. 1d) shows the evolution, throughout the plan-
ner generations, of the third and forth metric, representing
in dark red those generations where at least one of the Nr

best fronts doesn’t fulfill the constraints and in a blue scale,
the mean path length of the generations that fulfill the con-

straints, employing lighter colors for its lower values (better)
and darker for the higher values (worse).

The analysis of the graphics for 4 scenarios and all the
different subsets of planners (not included for lack of space),
shows that: 1) all GA variants perform similarly at the end,
although the ones with the crossover and mutation presented
in [?] are better in the initial generations, and 2) that the
PSO and DE planners with low parameters and selection
among the best are usually the best PSO and DE variants.
The comparison among the best variants of each planner, as
the one presented in Fig. 1, shows that the best DE variants
(D10 and D14) obtain better solutions than PSO and GA,
and that in this case, the GA variant (G2) is better than the
PSO (P14 and P16) (although in other scenarios the PSO
variants perform better than the GA).

4. CONCLUSIONS
To confront the performance of multiple planners, we pro-

pose the use of generic metrics capable of dealing with any
dominance definitions, and problem specific metrics that
consider the expert preferences. The results show how they
let us identify 1) the best variants of the bio-inspired plan-
ners for each scenario and 2) the set of parameters whose val-
ues improve/degrade the performance of each planner type.
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