
Requirements Interaction in the Next Release Problem

José del Sagrado
Department of

Languages and Computation
University of Almería
04120 Almería, Spain
jsagrado@ual.es

Isabel M. del Águila
Department of

Languages and Computation
University of Almería
04120 Almería, Spain
imaguila@ual.es

Francisco J. Orellana
Department of

Languages and Computation
University of Almería
04120 Almería, Spain

fjorella@ual.es

ABSTRACT
The selection of a set of requirements between all those pro-
posed by the customers is an important process in software
development, that can be addressed using heuristic opti-
mization techniques. Dependencies or interactions between
requirements can be defined to denote common situations
in software development: requirements that follow an order
of precedence, requiments exclusive of each other, require-
ments that must be included at the same time, etc. This
paper shows how requirements interactions affect the search
space explored by optimization algorithms. Three search
techniques, i.e. a greedy randomized adaptive search proce-
dure (GRASP), a genetic algorithm (GA) and an ant colony
system (ACS), have been adapted to the requirements selec-
tion problem considering interaction between requirements.
We describe the adaptation of the three meta-heuristic algo-
rithms to solve this problem and compare their performance.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: [Requirements/Specifications];
I.2.8 [Artificial Intelligence]: [Problem Solving, Control
Methods, and Search – Heuristic methods]

General Terms
Theory, Algorithms

Keywords
Ant colony optimization, Genetic algorithm, Requirements
selection, Next release problem, Requirement interactions

1. INTRODUCTION
Search-based optimization techniques have been succes-

fully applied in software project development, but software
engineers agree that one of the major problems we face when
developing software systems is the one related with require-
ments. Requirements problems have a large space of possible
solutions, becoming natural candidates for the application
of search based techniques[5][3]. The limitation of time and
resources in software development projects is performed by
means of prioritization of requirements and selection of the
best subset of them according to the resources. This prob-
lem, known as the next release problem (NRP) [1], has been

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

widely addressed applying meta-heuristic techniques, a re-
view of them appears in [4].

Usually, requirements interact with each other: some re-
quirements must be implemented before or at the same time
than others, or even being excluded. These interactions have
a significant impact on dimension of the search space when
NRP is tackled using heuristic techniques.

This paper shows how requirements interactions affect
the search space explored by the optimization algorithms
in NRP. Three different search techniques have been used
and their performance is evaluated by means of some com-
putational experiments.

2. PROBLEM DEFINITION
When we face NRP [1] there are a set of interrelated re-

quirements R = {r1, . . . , rn}. Each rj ∈ R has a devel-
opment cost ej , which represents the effort needed in its
development E = {e1, . . . , en}. The global satisfaction, sj ,
or the added value given by the inclusion of rj in the next
release, is obtained by combining customers´ proposal.

Requirement interactions are constraints that must be
considered forcing us to check whether conflicts are present
whenever we intend to select a new requirement. Several
kinds of requirement dependencies are proposed in [2]. These
interactions can be classified as functional interactions or
interactions that imply changes in the amount of resources
needed. Functional interactions contains stronger relation-
ships that cannot be ignored in NRP. They are: Implication
or precedence (ri ⇒ rj), ri cannot be selected if rj has not
been implemented yet. Combination or coupling, (ri � rj),
ri cannot be included separately from rj . Exclusion, ri⊕ rj ,
ri cannot be included with rj .

The goal is to select a subset of requirements R̂ from R,
within given constraints (i.e. resources bound B, interac-
tions between requirements). This is achieved by searching

for R̂ which maximize satisfaction and minimize develop-
ment effort considering the interaction constraints. Satisfac-
tion and effort of R̂ can be obtained: sat(R̂) =

∑
j∈R̂(sj),

eff(R̂) =
∑

j∈R̂(ej) where j is requirement rj . Our goal is,

maximize sat(R̂)

subject to eff(R̂) ≤ B
(1)

Functional dependencies are represented as a directed graph.
Nodes are requirements. Every directed arc, ri → rj , rep-
resents an implication between those requirements, ri ⇒ rj ;
whereas every bi-directional arc, ri ↔ rj , represents a com-

241

Table 1: Results obtained for the different DataSets
DataSet 1 (20 reqs., 5 clients, B = 25) DataSet 2 (100 reqs., 5 clients, B = 20)

Algorithm #Req Satisfaction Effort Time (ms) #Req Satisfaction Effort Time (ms)
GRASP 8± 0 757.5± 0 24± 0 94.14± 6.8 8± 0 279± 0 20± 0 782± 30.8

GA 8.27± 0.4 755.65± 2.2 24± 0 201.32± 33.9 7.59± 0.5 264.7± 10.4 19.92± 0.2 1702.53± 89.6
ACS 8± 0 757± 0 24± 0 232.84± 36.2 8± 0 276.86± 1.3 20± 0 2785.46± 66.8

GRASP: (#iter=100, α = 0.5) ; GA: (#iter=160, pop size = 60, pcross = 0.9);
ACS: (#iter=100, #ants=10, α = 1, β = 1, ρ = 0.1, ϕ = 0.1, q0 = 0.9)

bination relationship, ri�rj . The exclusion relationship has
to be taken into account when traversing the graph.

3. ALGORITHMS FOR THE NRP
GRASP proceeds iteratively by building first a greedy

randomized solution and then improving it through a lo-
cal search. The greedy function used, measures the quality
of ri based on users’ satisfaction with respect to the effort
as g(ri) = si/ei. In the GA an individual is a set of re-
quirements satisfying the restrictions of a given NRP (i.e.
a solution). Classic crossover and mutation operators are
more specific and difficult because it is necessary to take
into account B and requirements interactions in order to
obtain new valid individuals. For crossover the probability
for an individual Ri in a population Q to be selected as
parent is pRi = sat(Ri)/

∑
R′∈Q sat(R

′). Whereas in muta-
tion the probability of mutate an individual’s gen is taken
as 1/(10|R|). Individuals are repaired (i.e. transformed into
valid solutions) deleting single requirements in increasing
order of their profit value g(ri). The overall operation of
ACS can be described as follows: i) initialization of the
pheromone trail τ0 = 1/sat(R), ii) selection of a random
node as departure point for each ant in the colony, iii) each
ant builds its solution from its initial state. An ant locates
a set of neighboring states to visit (these states must satisfy
the restrictions of the problem). Among all of them selects
one taking into account the heuristic information (g(ri)) and
pheromone. Only the ant that has built the best solution
reinforces pheromone of arcs, τij = (1− ρ) ∗ τij + ρ∆τij ,

where, ∆τij = sat(R̂)/sat(R).

4. RESULTS AND CONCLUSIONS
For evaluating GRASP, GA and ACS algorithms we have

used two data sets and parameters configuration shown in
Table 1. We have tested each algorithm performing 100 in-
dependent runs for each of the data sets. For the first data
set, GRASP and ACS found the same solution, although
GRASP execution time is considerably better. GA found
slightly worst solutions in terms of satisfaction but includ-
ing more requirements than GRASP and ACS. We believe
that this is an effect of its design nature. Solutions (whether
they are valid or not) are combined by crossover and mu-
tated (there is not any use of the requirements interactions,
nor effort bound of the problem being solved) and finally the
solution obtained is “repaired” in a greedy way in order to
verify all the problem restrictions. On the second dataset,
GRASP found always the best solution in terms of satis-
faction. It is followed by ACS with slightly worst solutions;
perhaps the results would be closer to those of GRASP if we
had assigned to parameter β a higher value reinforcing the

greedy behavior of ACS. GA obtains worst solutions due to
the same reasons argued on dataset 1.

We have the feel that perhaps the results of ACS could be
improved by reinforcing its heuristic behavior , as GRASP
has obtained the best results in our experiments. GA has
shown the worst performance in our experiments, but it
would be useful to examine how it behaves when using other
repair operators designed specifically for this problem. Dur-
ing the adaptation of GA we have found several difficulties
with classic crossover and mutation operators due to the con-
straints imposed by NRP. This is why we have introduced
a repair operator that tries to recover a valid solution in a
greedy way and influences on the performance of our GA. It
would be useful to examine how GA will behave if we also
apply requirements interactions when repairing solutions.

As future work, we plan to study the quality of the solu-
tions found and the improvement of the requirements selec-
tion process.

The full paper can be downloaded at
http://www.dkse.ual.es/papers/20110407ReqsInt.pdf

5. ACKNOWLEDGMENTS
Spanish Ministry of Education and Science, TIN2010-20900-

C04-02 and by the Junta of Andalućıa TEP-06174.

6. REFERENCES
[1] A. J. Bagnall, V. J. Rayward-Smith, and I. M.

Whittley. The next release problem. Information and
Software Technology, 43(14):883–890, Dec. 2001.

[2] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell,
and J. N. och Dag. An industrial survey of
requirements interdependencies in software product
release planning. In Proc. 5th IEEE Int. Symp. on
Requirements Eng., 2001., pages 84–91, 2001.

[3] J. del Sagrado, I. M. del Águila, and F. J. Orellana.
Ant colony optimization for the next release problem. a
comparative study. In Proc. 2nd IEEE Int. Symp. on
Search Based Software Eng. (SSBSE 2010), pages
67–76, 2010.

[4] J. del Sagrado, I. M. del Águila, and F. J. Orellana.
Requirement selection: Knowledge based optimization
techniques for solving the next release problem. In
Proc. 6th Workshop on Knowledge Eng. and Software
Eng. (KESE 2010), pages 40–51. CEUR-WS, 2010.

[5] Y. Zhang and M. Harman. Search based optimization
of requirements interaction management. In Proc. 2nd
IEEE Int. Symp. on Search Based Software Eng.
(SSBSE 2010), pages 47–56, 2010.

242

