
Scalability of the Coevolutionary Automated Software
Correction System

Josh L. Wilkerson
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
jwilkerson@acm.org

Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT
The Coevolutionary Automated Software Correction sys-
tem addresses in an integral and fully automated manner
the complete cycle of software artifact testing, error loca-
tion, and correction phases. It employs a coevolutionary
approach where software artifacts and test cases are evolved
in tandem. The test cases evolve to better find flaws in the
software artifacts and the software artifacts evolve to bet-
ter behave to specification when exposed to the test cases,
thus causing an evolutionary arms race. Experimental re-
sults are presented which demonstrate the scalability of the
Coevolutionary Automated Software Correction system by
establishing correlations between program size and both suc-
cess rate and estimated convergence rate that are at most
linear.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search

General Terms: Algorithms, Experimentation

Keywords: Automated Debugging, Repair, Coevolution,
Genetic Programming, Search-Based Testing

1. INTRODUCTION
For a given software artifact, testing, locating the errors

identified, and correcting those errors is a critical and time
consuming process in software development. The Coevolu-
tionary Automated Software Correction (CASC) system [4]
views the problem of correcting a given software artifact as
a search in the space of all software artifacts with a starting
point of the given software artifact and a goal point of the
desired corrected version. Finding high-quality test cases is
a very hard problem in and of itself, so to perform a sam-
pling biased towards high-quality test cases can be viewed as
another search problem. These two searches are interdepen-
dent. Namely, the fitness of a software artifact is dependent
on the test case sample and vice versa. This relationship is
implemented using competitive coevolution. The test cases
evolve to better find flaws in the software artifacts and the
software artifacts evolve to better behave to specification
when exposed to the test cases, thus causing an evolution-
ary arms race with as ultimate result a corrected version of
the software artifact originally fed into the system. CASC

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

exploits the reduced complexity of the fitness function rela-
tive to the software artifact to be corrected.

The search space increases exponentially with program
length, which, if not reduced, limits CASC’s practicality. A
significant reduction can be made through the assumption
that the buggy source program is not dramatically differ-
ent from the correct program [3]. This limits the search to
neighborhood modifications, which results in a polynomial
search space [1]. Additional assumptions can be made to
further reduce the search space; however, each assumption
decreases CASC’s applicability. The empirical study pre-
sented in this paper investigates how the number of atomic
code elements in a program affects both CASC’s success rate
and estimated convergence rate.

2. CASC OVERVIEW
The initial program population is based on the buggy

source program, which is parsed and transformed into an
evolvable parse tree. The CASC parser supports nearly all
features of the C++ programming language. The general
section of code containing the bug must be enclosed by
two specific guard statements, designating the code block
as evolvable code to the system (this code section will be re-
ferred to as the evolvable section of the seed program). Ini-
tial population diversity is achieved by mutating the source
program. The CASC test case generation module gener-
ates test cases in the form of one or more lists of values, in a
method appropriate for the problem being addressed. CASC
also allows for the seeding of test case values, which are guar-
anteed preservation throughout the evolutionary process.

New programs are produced by applying one of five GP
operators: copy, reset, crossover, mutation, and architecture
alteration, with selection chance based on a user supplied
probability distribution; however, the probabilities for mu-
tation and crossover are adaptively updated by the system.
Compile time errors are checked for in the event that a muta-
tion or crossover resulted in an incorrect program. Test case
reproduction uses 100% crossover rate. Uniform crossover
is used with a 10% bias towards the fitter parent. The mu-
tation rate is 10%. The reproduction operators are applied
until the specified number of offspring have been created.

In order to maximize population exposure, each individual
is executed against all opponents in the competing popula-
tion. Repeat program-test case pairings are not re-executed;
the results of such pairings are retrieved from a lookup ta-
ble (implemented as a hash table). The remaining pairings
are divided and executed in parallel on a computing cluster

243



employing MPI. Each computing node runs the executions
concurrently in threads. Executions are scored using the
fitness function for the problem. Run time errors and pro-
gram timeouts are monitored during execution. If any errors
occur, the offending program is assigned an arbitrarily low
fitness. The overall fitness for each individual is calculated
as the average of all the pairings from the current generation.

(µ + λ) survival selection is performed using an inverse
fitness proportional k-tournament. This process is repeated
until the populations are at the specified sizes. CASC termi-
nates after a specified number of generations are completed.

3. EXPERIMENTS
A buggy version of bubble sort presented in [2] as bug 4

was used as the base program in the presented experiments.
Nine versions of this program were created in which each
version has an additional line included between the guard
statements marking the buggy code. Table 1 shows the node
counts N for the generated source programs. A linear trend
line can be generated for the N values with an R2 value
of 0.9807, indicating that problem size increases at a linear
rate as the lines increase.

Table 1: Program Node Count and Success Rate
Lines 1 2 3 4 5 6 7 8 9
N 4 11 15 23 37 49 53 58 62

Success
100 98 88 78 68 76 64 62 60

Pctg

For each version of the source program, 50 experimental
runs were executed. Each experiment executed 400 gener-
ations in which each population contained 50 individuals.
50 new programs and 25 new test cases were created each
generation. Selection tournament size for programs was 5,
while all other tournament sizes were 10. The probability
distribution of genetic operators for program reproduction
were copy: 2.5%, reset: 5%, arch. alter: 2.5%, crossover:
45%, mutation: 45%; crossover and mutation were updated
every 10 generations with a 2.5% addition to the probability
of the more successful of the two at the cost of the other.
The configuration values used are based on succes values
found in literature and hand tuned for CASC.

The results for the experiments are shown in Table 1 and
Figure 1. For the experiment success rate linear and log-
arithmic trend lines can be generated with R2 values of
0.9076 and 0.9075, respectively. Similarly, linear and log-
arithmic trend lines can be generated for the average birth
generation of valid solutions whose R2 values are 0.7978 and
0.8050, respectively. Based on these results it can be hy-
pothesized that the relationships between success rate and
problem size and between estimated convergence rate and
problem size are at most linear and very possibly sub-linear.

Figure 1 gives an overview of the distribution of birth
generations for valid solutions (based on the minimum and
maximum generations observed and first, second, and third
quartiles). The fourth line added to the evolvable section is a
branch statement determining if the other three lines would
be executed, implying that modifications made to the fourth
line could completely undermine changes made to the other
three lines. This addition made convergence take approxi-
mately four times as long in 75% of the experiments, as can
be seen in Figure 1. This observation indicates future con-

siderations that need to be taken in the study of CASC’s
scalability as well as possible additions to CASC to account
for similar situations. The performance of the eight line ex-
periment (and the six line, to a lesser degree) is notably
different from the apparent trend in the results. These re-
sults indicate a need for additional experimentation in order
to be certain statistical stability has been achieved.

Figure 1: Box Plot of Solution Birth Generations
for Successful Experiments

4. CONCLUSIONS AND FUTURE WORK
The results of an empirical study into the impact that

problem size has on CASC’s success rate and estimated con-
vergence rate are presented in this paper. These results show
that problem size has at worst a linear effect on both the suc-
cess rate and the estimated convergence rate of the CASC
system. Results are also presented that show that problem
size may have a sub-linear effect on these performance mea-
sures. Additional experimentation is needed to be certain of
the statistical stability of the results, as well as to further in-
vestigate the possibility of sub-linear relationships between
problem size and success and estimated convergence rates.
Also, the effect that various statement types in the evolvable
section have on the CASC system needs to be investigated.

5. ACKNOWLEDGMENTS
This work was funded by the Missouri S&T Intelligent

Systems Center.

6. REFERENCES
[1] A. Arcuri. Automatic software generation and

improvement through search based techniques. PhD
thesis, University of Birmingham, 2009.

[2] A. Arcuri and X. Yao. A novel co-evolutionary
approach to automatic software bug fixing. In
Proceedings of IEEE CEC 2008, pages 162-168, June
2008.

[3] R. DeMillo, R. Lipton, and F. Sayward. Hints on Test
Data Selection: Help for the Practicing Programmer.
Computer. 11(4):34-71, 1978.

[4] J. Wilkerson and D. Tauritz. Coevolutionary
Automated Software Correction. In Proceedings of
GECCO 2010, pages 1391-1392, 2010.

244




