
Software Clustering by Example

Martin Faunes, Marouane Kessentini, Houari Sahraoui
DIRO, Université de Montréal

Montréal, QC, Canada
{faunescm, kessentm, sahraouh}@iro.umontreal.ca

ABSTRACT
We model software clustering problems in a setting, where
elements of a software system form a graph to be partitioned
in order to derive high-level abstractions. We extend this
formulation in a way that the graph partitioning solutions
are evaluated by the degree of their conformance with past
clustering cases given as examples. We provide a concrete
illustration of this formulation with the problem of object
identification in procedural code, for which we obtained bet-
ter results than a clustering approach.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement —Restructuring, reverse engineering, and
reengineering

General Terms
Design

Keywords
Software clustering, Example-based software engineering

1. INTRODUCTION
For more than 20 years, researchers have been proposing

approaches and algorithms to automatically derive more ab-
stract constructs from existing low-level software elements.
In general, deriving such abstract constructs is treated as
a clustering problem, where low-level elements are grouped
together according to a given objective function. In modern
software engineering, abstract elements such as classes and
components generally reify actual entities or functions of the
application domain. Consequently, their existence obeys the
application semantics. If we want to obtain them by clus-
tering existing low-level elements in the code, the clustering
objective function should approximate somehow the appli-
cation semantics from the code. The more a group of basic
elements conforms to an application entity according to the
approximation method, the more it is considered as an ac-
ceptable abstraction.

The most commonly used approximation heuristic in soft-
ware clustering (SC) problems is that elements that are close

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

structurally are also close semantically, i.e., they form an ab-
straction that represents an application entity or function.
Although the existing approximation methods give good re-
sults in some clustering problems, they generally produce a
lot of false positives. In this paper, we propose a new formu-
lation of software-clustering problems. In this formulation,
we view the clustering as a grouping process guided by the
similarity with past clustering examples. We illustrate our
proposal with the well-know clustering problem of object
identification in procedural code. Our evaluation showed
that the majority of identified objects are correct.

2. CLUSTERING BY EXAMPLE
The majority of software clustering contributions is based

on the structure-semantics-equivalence hypothesis. In this
context, groups of elements that are structurally dependent
are viewed as abstractions corresponding to application do-
main entities. In this setting, the contributions can be sum-
marized as: given a set of elements composing a software
and the dependency relationships between them, find groups
(clusters) of elements that maximize an objective function
and/or satisfy a set of constraints (e.g., [1]). There are many
ways to formally represent the problem of software cluster-
ing. The most common way is to view it as a graph parti-
tioning problem (e.g., [3, 2]).

The software to be clustered defines a graph G(V,E). The
set of vertexes V represents the elements of interest in the
software and the set of edges E ⊆ V × V represent the
dependencies between these elements. The graph G is typ-
ically a directed graph. For a clustering problem, different
types of elements in a software system could be of interest.
Consequently, the vertexes in V and edges in E are typed.
Moreover, as stated by Mitchell in [4], for some clustering
problems, edges in the graph could be weighted to measures
the strength of the dependency between two elements. For
instance, the weight could indicate the number of method
invocations between two classes. The partition of a graph G
into m clusters is defined as PG = {K1,K2, · · · ,Km} where
each Ki is a cluster corresponding to a sub-graph of G such
that each cluster Ki is a non empty sub-graph of G, each
vertex in G belongs to one and only one cluster.

An objective function is necessary to evaluate the qual-
ity of a partition and to guide the partitioning process. In
general, the objective function involves a vector M of met-
rics to be measured on a clustering solution. Each metric
defines an objective to reach. To combine this multiple ob-
jectives into a single value, the most common technique is
to use a vector W of weights that define the importance of

245

each metric. Cohesion and coupling are the most used met-
rics for clustering evaluation. In conclusion, following the
structural-semantics-equivalence hypothesis, almost all the
approaches aims at minimizing or maximizing an objective
function defined to measure structural dependencies inside
and between clusters starting from a dependency graph. We
propose a different approach based on the hypothesis that
examples can help recovering part of the semantic proxim-
ity. The idea behind our clustering process is to compare
configurations of groups of elements to configurations in an
example base that led to abstract entities.

We define a base of examples as a set BE of n pairs
se = {Ge, PGe} of already clustered software represented
by a dependency graph Ge and its corresponding partition
PGe, formally, BE = {se | se = {Ge, PGe}, 1 ≤ e ≤ n}.
The example base is used as set of clusters EK coming
from different systems with EK = {Qj ∈

⋃
PGe | se ∈ BE}.

Software elements represented by vertexes in V of G(V,E)
are grouped together by similarity with cluster examples
Qj ∈ EK. To this end, we define a function ave : V → KE
that assigns an example cluster to each element in the graph
to partition. The clustering process produces a partition PG

of the graph G(V,E) with the principle that vertexes with
the same assigned cluster Qj ∈ KE form a cluster Ki ∈ PG.
The objective function f is defined in terms of similarity be-
tween the groups of elements of the system to partition with
the associated cluster examples. It could be calculated as
the weighted average of similarities of these groups. To give
equal chances to each group, the similarity is normalized by
the size of the groups (f =

∑k
i=1 | Ki | Sim(Ki, Qj)/ | V |).

The similarity Sim between a candidate cluster Ki and an
example cluster Qj is defined as a function of the similarities
between their respective elements. It is a variation of the
graph matching function defined in [21]. Formally,

Sim(Ki, Qj) = 1
|Ki|

∑
v ∈ Ki maxq∈Qj vSim(v, q) ∈ [0, 1]

The function vSim(v, q) compares a vertex v ∈ Vi of Ki to
a vertex q ∈ Vj of Qj . vSim(v, q) equals zero if the types of
v and q are different, that is, if v and q are not comparable.
Otherwise, vSim(v, q) will match the edges EV (v) of v and
EV (q) of q and will return the ratio of matched edges over
the total edges of v and q.

3. APPLICATION
In this section, we show how this formulation could apply

to a specific clustering problem, namely, object identification
in procedural code. The intuition behind many solutions to
this problem is that if a subset of procedures accesses the
same variables, this is an indication that the variables de-
fine the state of an object and the procedures its behavior
(e.g., [5]). The software to be clustered is defined as a graph
G(V,E) where the vertexes are procedures and variables
and the edges procedure calls and variable accesses. The
base of example BE contains a set of procedural programs
{Ge, PGe} represented as graphs and the corresponding par-
titions. The space of all the possible partitions is very large.
To explore this space, a heuristic search is suited. In this
illustration we use a hybrid method that combines Particle
Swarm Optimization (PSO) and Simulated Annealing (SA).
First, we perform a global heuristic search by PSO to reduce
the search space and select an initial solution. Thena local
heuristic search is done using SA to refine this solution.

To evaluate our example-based clustering, we selected 10
C programs from the website Planet Source Code 1. Each
program was parsed and a corresponding graph was derived.
Then, we manually identified object-like structures in each
program and defined a partition of its elements accordingly.
To measure the correctness of the example-based clustering,
we used a 10-fold cross-validation procedure. For each fold,
we use 9 programs as the base of examples and identify the
objects in the tenth program (a different one in each fold).
The objects identified automatically are compared to those
found manually. The correctness for each fold is calculated
as the proportion of composing elements that are assigned
to good objects. The global correctness is derived as the av-
erage of the 10 fold’s correctness values. Correctness varies
between 66% and 100% depending on the programs. The
identification in small programs is correctly done (100%).
It was good for large programs (around 80%). Programs
with less good values are the average ones. 7 over the 10
programs have identification correctness greater than 80%.

We also compared our approach to classical, metric-based
ones. For all the 10 programs, the correctness of our ap-
proach is significantly better with our new formulation than
with the classical one. The difference is even more important
for larger programs. This is a clear indication that similar-
ity with previous examples, combined with the structural
dependencies, could improve the quality of the clustering
approaches in SC problems

4. CONCLUSIONS
In this paper, we first propose a general formulation of the

SC problems. Then, we extend this formulation by defining
the clustering objective functions in terms of similarity with
previous clustering examples rather than only the structural
proximity. Our formulation is general and could be used for
various SC problems. We illustrate our approach with the
well-known problem of object identification.

5. REFERENCES
[1] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui.

Automatic package coupling and cycle minimization. In
Proceedings of the 2009 16th Working Conference on
Reverse Engineering, pages 103–112, 2009.

[2] I. Czibula and G. Serban. Improving systems design
using a clustering approach. Int. Journal of Computer
Science and Network Security, 6(12):40–49, 2006.

[3] M. Harman, R. M. Hierons, and M. Proctor. A new
representation and crossover operator for search-based
optimization of software modularization. In Proceedings
of the Genetic and Evolutionary Computation
Conference, pages 1351–1358, 2002.

[4] B. S. Mitchell. A heuristic search approach to solving
the software clustering problem. PhD thesis, 2002.

[5] H. Sahraoui, H. Lounis, W. Melo, and H. Mili. A
concept formation based approach to object
identification in procedural code. Automated Software
Engg., 6:387–410, 1999.

1www.planet-source-code.com

246

