
An Approach to Automatic Input Sequence Generation for
GUI Testing using Ant Colony Optimization

Sebastian Bauersfeld
∗

Berner & Mattner GmbH
Gutenbergstr. 15

10587 Berlin, Germany

Stefan Wappler
†

Berner & Mattner GmbH
Gutenbergstr. 15

10587 Berlin, Germany

Joachim Wegener
‡

Berner & Mattner GmbH
Gutenbergstr. 15

10587 Berlin, Germany

ABSTRACT
Testing applications with a graphical user interface (GUI) is
an important, though challenging and time consuming task.
The state of the art in the industry are still capture and
replay tools, which greatly simplify the recording and ex-
ecution of input sequences, but do not support the tester
in finding fault-sensitive test cases. While search-based test
case generation strategies, such as evolutionary testing, are
well researched for various areas of testing, relatively little
work has been done on applying these techniques to an en-
tire GUI of an application. This paper presents an approach
to finding input sequences for GUIs using ant colony opti-
mization and a relatively new metric called maximum call
stacks for use within the fitness function.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Test coverage of code, Testing tools

General Terms
Verification

Keywords
GUI testing, metaheuristics, ant colony optimization, auto-
mated test case generation

1. INTRODUCTION
Despite of their known deficits, scripting- and capture and

replay tools are frequently used in the industry for testing
applications with GUIs. They help with recording and re-
playing input sequences, but the tester still has to come up
with appropriate test cases. The resulting test suites require
constant maintenance, since changes to the SUT will cause
some of the sequences to not be replayed properly. Con-
sidering these difficulties, techniques for automatic test case
generation are quite desirable.

One way to deal with the task of finding test data, is to
treat it as an optimization problem. There has been a lot

∗sebastian.bauersfeld@berner-mattner.com†stefan.wappler@berner-mattner.com
‡joachim.wegener@berner-mattner.com

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

of research about this in a field commonly known as search-
based software engineering [5, 6]. Some of these techniques
have also been applied to GUI testing [2, 3]. Often these
works use an approximation of the GUI in the form of an
event flow graph (EFG). An EFG is a directed graph whose
nodes are the actions that a user can perform. A transition
between action x and action y means: y is available after
execution of x. By traversing the edges of this graph one
can generate sequences offline. A length-n input sequence
is a tuple s = (a1, a2, . . . , an) ∈ An where A denotes the
set of all actions that are executable on the SUT. Since the
EFG model is only an approximation, and due to the fact
that some actions are only executable in certain states of
the SUT, not all generated sequences are guaranteed to be
feasible.

For example Memon et al. [2] use genetic algorithms to
fix broken test suites. They try to find a covering array to
sample from the sequence space. The array is constrained
by the EFG of the GUI (certain combinations of actions are
not permitted). Since it is hard to find such a constrained
covering array, they employ a special metaheuristic based
on simulated annealing. This way they get their initial test
suite which, due to the fact that the EFG is only an approx-
imation of the GUI, contains infeasible input sequences. By
dropping these, they lose coverage regarding the coverage
array. Thus they use a genetic algorithm which utilizes the
EFG to generate new sequences offline, which will then be
executed and rewarded depending on how many of their ac-
tions are executable and on how much coverage they restore.

2. OUR APPROACH
This paper proposes a new approach to input sequence

generation, based on ant colony optimization. We use a rel-
atively new criterion called maximum call stacks (MCS) to
direct our optimization process. We generate our sequences
online, which means that we execute the SUT and repeat-
edly choose from a set of possible actions. Thus we do not
need a model of the GUI and do not have to deal with infea-
sibility. We developed our own test execution environment,
which is able to scan Java SWT applications and obtain all
visible widgets and their properties. From these we are able

c l i c k (”F i l e ”) , c l i c k (”Pr int ”) , p r e s s (Tab) ,
type (”22 ”) , p r e s s (Tab) , type (”44 ”) , c l i c kBtn (”OK”)

Figure 1: Input sequence to Microsoft Word.

251

public class CT{
public static void main (S t r i ng [] args){

CT ct = new CT() ;
c t .m2 () ;
c t .m3 () ;

}
public CT(){ System . out . p r i n t l n (”c to r ”) ;}
public void m1(){}
public void m2(){ m1() ; }
public void m3(){

m1() ;
for (int i = 0 ; i < 100 ; i++)

m2() ;
}

}

Figure 2: Simple Java program

to derive a set of possible actions (clicks, drag and drop ac-
tions, keystrokes). Our main SUT is the Classification Tree
Editor [1], a graphical editor for classification trees. Our
general strategy for sequence generation looks as follows:

generateSequence()

(1) do while ¬stoppingCriteria()
(2) S ← {}
(3) for i = 1 to populationSize
(4) startSUT ()
(5) for j = 1 to sequenceLength
(6) W ← getWidgetsAndProperties()
(7) A← derivePossibleSetOfActions(W)
(8) a← fitnessProportionateSelection(A)
(9) execute(a)

(10) sij ← a
(11) end
(12) shutdownSUT ()
(13) S ← S ∪ {si}
(14) if mcs(maxSequence) < mcs(si)
(15) maxSequence← si
(16) end
(17) end
(18) adjustPheromones(S)
(19) end
(20) return maxSequence

We start the SUT and perform a fitness proportionate se-
lection among the available actions. The fitness of an action
is a combination of its pheromone and value: fitness(a) =
pheromone(a)δ + value(a)ε were δ and ε are tuning param-
eters used to adjust the importance of pheromones and val-
ues. After generating a certain amount of sequences, we
rate these (according to the number of generated MCSs)
and adjust the pheromones of the contained actions. We are
currently in the process of assessing appropriate stopping
criteria and pheromone update algorithms.

We adopted a relatively new criterion that McMaster et
al. [4] used to reduce the size of existing test suites. The idea
is to instrument the Java virtual machine of an application
to obtain a method call tree for every thread. From these
trees one is able to generate the set of maximum call stacks
(MCS). An MCS is a path through a tree starting at the
root node and ending at a leaf. In figures 2 and 3 we see a
Java program and its corresponding method call tree.

The tree is just a simplification of the much larger origi-

main()

CT.m2()

CT.m3()

CT.CT()

CT.m1()

CT.m1()

CT.m2() CT.m1()

println() . . .

Figure 3: Call tree for the program in Figure 2.

nal version, which would also contain the methods of class-
loaders and Java library code. In order to obtain the num-
ber of MCSs, we just count the trees’ leaves. The sum of all
leaves of all call trees will be our metric. Threads with the
same run() method will be merged into a single tree.

McMaster et al. provide an implementation for Java ap-
plications which we use to find test sequences (of a given
length), which generate as many different MCSs as possible
when executed on the SUT. The idea behind this is: The
more MCSs are generated, the more aspects of the SUT are
tested and the better the quality of the sequence.

The above functionality is packaged in a so called JavaAgent,
which can be attached to a virtual machine via command
line. The approach neither requires modifications to the
SUT nor access to its source code.

We are currently in the process of implementing our ideas
and are looking forward to presenting a working framework
and experimental results soon.

3. ACKNOWLEDGEMENTS
This work is supported by EU grant ICT-257574 (FITTEST).

4. REFERENCES
[1] http://www.berner-mattner.com/en/berner-mattner-

home/products/cte/index-cte-ueberblick.html.

[2] S. Huang, M. B. Cohen, and A. M. Memon. Repairing
gui test suites using a genetic algorithm. In ICST ’10:
Proceedings of the 2010 Third International Conference
on Software Testing, Verification and Validation, pages
245–254, Washington, DC, USA, 2010. IEEE Computer
Society.

[3] D. J. Kasik and H. G. George. Toward automatic
generation of novice user test scripts. In CHI ’96:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 244–251, New
York, NY, USA, 1996. ACM.

[4] S. McMaster and A. Memon. Call-stack coverage for
gui test suite reduction. IEEE Transactions on
Software Engineering, 34:99–115, 2008.

[5] P. McMinn. Search-based software test data generation:
a survey: Research articles. Softw. Test. Verif. Reliab.,
14:105–156, June 2004.

[6] S. Wappler and J. Wegener. Evolutionary unit testing
of object-oriented software using strongly-typed genetic
programming. In M. Cattolico, editor, GECCO, pages
1925–1932. ACM, 2006.

252

