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ABSTRACT
The idea behind hyper-heuristics is to discover rules that
relate different problem states with the best single heuris-
tic to apply. This investigation works towards extending
the problem domain in which a given hyper-heuristic can
be applied and implements a framework to generate hyper-
heuristics for a wider range of bin packing problems. We
present a GA-based method that produces general hyper-
heuristics that solve a variety of instances of one- and two-
dimensional bin packing problem without further parameter
tuning. The two-dimensional problem instances considered
deal with rectangles, convex and non-convex polygons.

Categories and Subject Descriptors: I.2 [Computing
Methodologies]: Artificial Intelligence — Problem Solving,
Control Methods and Search.

General Terms: Algorithms.

Keywords: Evolutionary Computation, Hyper-heuristics,
Optimization, Bin Packing Problem, 2D irregular Bin Pack-
ing Problem.

1. INTRODUCTION
The one-dimensional (1D) and two-dimensional (2D) bin

packing problem (BPP) are particular cases of the cutting
and packing problem, which consists of finding an arrange-
ment of items or pieces inside identical objects such that
the number of objects required to contain all pieces is mini-
mum. Heuristic approaches for the 2D bin packing problem
present at least two phases: first, the selection of the next
piece to be placed and the corresponding object to place it;
and second, the actual placement of the selected piece in
a position inside the object according to a given criteria.

A hyper-heuristic is a re-usable method that chooses bet-
ween a range of heuristic approaches to robustly tackle a
wider range of problems. This paper proposes a hyper-
heuristic generation model that is useful for solving 1D and
2D BPP. The proposed model was applied to one-dimensional
bin packing problems [3], and later adapted separately to
the 2D regular [5] and 2D irregular (convex) packing pro-
blems [6]. Now, we integrate these problems into one frame-
work and extend the hyper-heuristic solution model to ins-
tances including non-convex polygons increasing the level of
geometrical complexity and computational burden.
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Table 1: Representation of the instance state.

Feature Description

1 Number of pieces.
2 Mean area of remaining pieces.
3 Variance of the area of remaining instance pieces.
4 Mean of the rectangularity of remaining pieces.
5 Variance of the rectangularity of remaining pieces.
6 Mean of the height of the remaining pieces.
7 Variance of the width of the remaining pieces.
8 Fraction of remaining pieces in the instance

whose area is above 1/2 of the object area.
9 Mean of the degree of concavity of the remaining pieces.
10 Fraction of the instance total items remaining.

2. COMBINING HEURISTICS WITH A GE-
NETIC ALGORITHM (GA)

Ross et al. [3] and Terashima et al. [5, 6] present a GA-
based method that produces general hyper-heuristics that
solve the 1D and the 2D BBP respectively. Each individual
in the GA population is a possible hyper-heuristic, that is,
a rule that relates each possible instance state (condition)
with a single heuristic to be applied (action).

Set of Heuristics. The following six selection heuristic
were employed: First Fit Decreasing (FFD), Filler + FFD,
Best Fit Decreasing, Djang and Finch with initial fullness
of 1/4, with initial fullness of 1/3 and with initial fullness of
1/2. The 1D and 2D cases of the BPP share the same selec-
tion heuristics. For the 2D BPP, additionally a placement
heuristic has to be applied to find a solution: Constructive
Approach with Maximum Adjacency [6].

Representation of the instance state. Each instance
to be solved by the hyper-heuristic is characterized by a nu-
merical vector that summarizes some of its relevant features.
According to this numerical vector, the hyper-heuristic de-
cides which single heuristic to apply every time. We em-
ployed the methodology proposed in [2] with all our testbed
instances and found different features that are related to
heuristic performance (see Table 1).

All items in 1D instances have only one dimension (height),
so, their width has a variance of zero. For 1D instances, area
is computed assuming all items and bins have a fixed width.
Rectangularity is a quantity that represents the proportion
between the area of a piece and the area of a horizontal
rectangle containing it. The degree of concavity is defined
in [7]. For a concave polygon, the degree of concavity is
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> 1. It is possible to know what kind of instance we have
at hand when looking at the features 4, 7 and 9 of the ten-
value numerical representation of an instance (see Table 1).
For example, a 2D regular instance has the following values:
variance of width 6= 0, mean of rectangularity = 1 and mean
of degree of concavity = 1.

Chromosomes. Each chromosome is composed of a se-
ries of blocks. Each block includes several numbers. All
numbers in a block, except the last one, represent an ins-
tance state which is the numerical vector mentioned above.
The last number identifies a single heuristic (from the 6 se-
lection heuristics). An individual solves a problem instance
as following: given an instance and having computed its
numerical representation, find the closest block in the chro-
mosome and apply the related single heuristic. This will
place one or several items or pieces and will produce a new
problem-state representation. The process is repeated un-
til all pieces are placed. The task is to find a chromosome
(hyper-heuristic) that is capable of obtaining good solutions
for a wider variety of problems.

3. EXPERIMENTS AND RESULTS
Our experimental testbed is comprised by a total of 1417

instances. The 397 1D problem instances were drawn from
the literature [1, 4, 8]. We have 540 2D instances containing
only convex polygonal pieces that were randomly generated
in [6] including 30 rectangular instances. The 480 new 2D
instances containing some non-convex polygons were ran-
domly produced for this investigation. There is a variety
of instance feature values; for example, there are instan-
ces whose pieces have an average size of 1/30 of the object,
while other instances have huge pieces (averaging almost 2/3
of object each piece).

Two experiments were conducted sorting the available ins-
tances in two balanced training and testing sets and other
two experiments swapped training and testing sets. Four ex-
periments overall. Experiments were conducted with popu-
lation of size 30, crossover probability of 1.0, mutation prob-
ability of 0.10, for 80 generations. For each of the four ex-
periments five GA processes were run. For each complete
run the two individuals with highest fitness were employed
to solve the whole testing set and the best was selected as
the hyper-heuristic of the run. Overall, 20 hyper-heuristics
were employed to measure the effectiveness of the model.

Each hyper-heuristic generated was used to solve the test-
ing set of instances of the experiment where it comes from.
There exists correspondence between the category of pro-
blem instances and the single heuristics more often employed
(test of contingency table with the χ2 statistic, p-value <
0.001). This is what we expected because different cate-
gories of instances have different numerical representations;
so, the hyper-heuristics suggest different single heuristics to
apply. For 1D instances, the Filler heuristic was employed
29.1% of the times, while this heuristic was chosen only 7.5%
of the times when solving 2D convex instances.

In Table 2, we report the average number of extra objects
delivered by the best-hyperheuristic per experiment, com-
pared against the number of objects employed by the best
single heuristic for each instance. For experiments 1, 3 and
4, the best hyper-heuristic for 1D instances deliver less ob-
jects than the correspondent best single heuristic (numbers
are negative for 1D instances). On average, the best hyper-
heuristic of the 5 runs solved 1D instances employing 0.028

objects less than the best of the 6 single heuristics. For Ex-
periment 1, extra number of objects delivered by the best
hyper-heuristic is statistically different for 1D and for 2D
instances (non-parametric Mann-Whitney U statistical test
for means, p-value = 0.001). For the rest of the experiments,
the difference is not significant between 1D and 2D BPP.

Table 2: Average number of extra objects delivered
by the best-hyperheuristic, compared against results
of the best single heuristic for each instance.

Experiment 1D Convex 2D Non Convex 2D
1 -0.090 0.007 -0.008
2 0 0 0
3 -0.005 0.011 0.008
4 -0.015 -0.007 0.021

Average -0.028 0.003 0.005

4. CONCLUSIONS
In this research we applied a hyper-heuristic approach to

solve efficiently a wide range of 1D and 2D bin packing pro-
blem instances with minimum parameter tuning and good
results. Among the 2D instances, there are rectangles, con-
vex and non-convex polygons. For some of the instances,
the hyper-heuristics achives better results than the best of
the single heuristics.
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