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ABSTRACT

Learn-and-Optimize (LaO) is a generic surrogate based
method for parameter tuning combining learning and opti-
mization. In this paper LaO is used to tune Divide-and-
Evolve (DaE), an Evolutionary Algorithm for AI Planning.
The LaO framework makes it possible to learn the relation
between some features describing a given instance and the
optimal parameters for this instance, thus it enables to ex-
trapolate to unknown instances in the same domain. More-
over, the learned model is used as a surrogate-model to accel-
erate the search for the optimal parameters. The proposed
implementation of LaO uses an Artificial Neural Network
for learning the mapping between features and optimal pa-
rameters, and the Covariance Matrix Adaptation Evolution
Strategy for optimization. Results demonstrate that LaO
is capable of improving the quality of the DaE results even
with only a few iterations. The main limitation of the DaE
case-study is the limited learning time and amount of mean-
ingful features that are available. However, it is demon-
strated that the learned model is capable of generalization
in the domain to unknown instances.
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1. INTRODUCTION

All state of the art parameter tuning techniques, like for ex-
ample F-Race, REVAC and ParamILS [5] face the same cru-
cial generalization issue: the generalization of a parameter-
set that has been optimized for a given problem to another
one. The answer of course depends on the similarity of the
problems. However, in Al Planning, sufficiently accurate
features have not been specified that would allow to describe
the problem, no design of a general learning framework has
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been proposed, and no general experiments have been car-
ried out. This paper makes a step toward a framework for
parameter tuning applied generally for Al Planning and pro-
poses a preliminary set of features. The Learn-and-Optimize
(LaO) framework consists of the combination of optimizing
and learning, i.e., finding the mapping between features and
best parameters.

In this paper, the target optimization technique is Evolu-
tionary Algorithms (EA), more precisely the evolutionary
Al planner called Divide-and-Evolve (DaE). However, DaE
will be here considered as a black-box algorithm as described
in [4].

2. LEARN-AND-OPTIMIZE

As [1] demonstrates parameters tuned for one instance may
not be optimal for other instances. One workaround is to
aim at learning a complex relation between instances and
optimal parameters.
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Figure 1: Flowchart of the LaO framework, displaying only
4 instances.



Domain # of # training 7 test ANN quality-ratio  quality-ratio  quality-ratio
Name iterations  instances  instances error in LaO ANN on train  ANN on test
Freecell 16 108 230 0.1 1.09 1.05 1.04
Grid 10 55 124 0.09 1.09 1.05 1.03
Mprime 8 64 152 0.08 1.11 1.05 1.04

Table 1: Results by domains. ANN-error is given as MSE, as returned by FANN. The quality-improvement ratio ”in LaQ” is

that of the best parameter-set found by LaO.

Suppose that we have n features and m parameters (con-
sidered to be continuous), and we are doing per-instance
parameter tuning on instance Z by optimizing the fitness
function fzr : R™ — R, the expected value of DaE exe-
cuted with parameters p € R™. The optimal parameter set
is defined by popt = argminy{fz(p)}. For each instance Z,
consider the set of features: F'(Z). We try to learn the map-
ping from the feature space to the optimal parameter space,
which might not be totally unambiguous.

p:R" = R, p(F) = popt (1)

A multilayer Feed-Forward Artificial Neural Network (ANN)
was chosen for the learning of the features-to-parameters
mapping. The intermediate models were already used in op-
timization as in standard surrogate-model based techniques.
As an optimizer for each instance a simple yet robust (1+1)-
Covariance Matrix Adaptation Evolution Strategy [2] was
chosen. In addition random gene-transfer between instances
was developed, transferring to all of the instances with uni-
form random distribution the so-far best parameter of a dif-
ferent instance. Figure 1 shows the LAO framework with
the described implementations. The implementation of LaO
uses the Shark library [3] for CMA-ES and the FANN library
for ANN [6]. Since DaFE is not deterministic, the median of
11 independent runs of Dak with a given parameter-set was
computed.

Name Min Max Default
Probability of crossover 0.0 1 0.8
Probability of mutation 0.0 1 0.2
Rate of mutation add station 0 10 1
Rate of mutation delete station 0 10 3
Rate of mutation add atom 0 10 1
Rate of mutation delete atom 0 10 1
Mean average for mutations 0.0 1 0.8
Time interval radius 0 10 2
Maximum number of stations 5 50 20
Maximum number of nodes 100 100 000 10 000
Population size 10 300 100
Number of offspring 100 2 000 700

Table 2: DaE parameters that are controlled by LaO

One iteration of LaO amounts to 5 iterations of CMA-ES,
followed by one ANN training and one Genetransferer. The
ANN had 3 fully connected layers, the input and hidden
layer had both 12 neurons corresponding the number of fea-
tures. In one iteration of LaO, the ANN was only trained
for 50 epochs. After stopping LaO, retraining was made
with 300 ANN epochs with the best data, to avoid under-
training. The controlled parameters of DaE are described
in table 2. The feature-set consists of 12 features. The first
6 features are computed from the domain and instance files:
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number of fluents, goals, predicates, objects and types. One
further feature is called mutex-density, which is the number
of so-called "mutexes” divided by the number of all fluent-
pairs. We also kept 6 less important features: number of
lines, words and byte-count of the instance and the domain
file.

For evaluation the quality-improvement the quality-ratio met-
ric defined in IPC competitions was used. The baseline is
the default parameter-setting. The ratio of the fitness value
for the default parameter and the tuned parameter was com-
puted and average was taken over the instances in the train
or test-set.

Q _ Fitnessbaseline (2)
3 sample domains were selected from the Planning and Learn-
ing Part of IPC2011: Freecell, Grid, and Mprime. As it can
be seen in Table 1, some quality-gain in training was consis-
tently achieved, but the transfer of this improvement to the
ANN-model was only partial, probably because the feature-
set is not strong enough. On the other hand, the ANN model
generalizes excellently to the the independent test-set.

Fitnessiyned
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