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ABSTRACT
We compare various approaches for multimodal optimiza-
tion; we focus on comparing restart and more sophisticated
approaches, and on the use of quasi-random numbers.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization

General Terms
Theory

1. INTRODUCTION
In this section we (i) introduce multimodal optimization

(ii) introduce quasi-random points (which will be used in
our algorithms).

1.1 Multimodal optimization
Multimodal optimization (MMO) sometimes refers to

looking for one optimum, and avoiding local minima. In this
paper, MMO is the research of all global optima. Evolution
Strategies (ES [17, 1]) are a classical tool for MMO, but
there are not so many rigorous analyses of ES for MMO. We
will here investigate ES for MMO both theoretically and ex-
perimentally. ES are a wide family of algorithms, and many
other local search tools could be used instead of ES here;
direct search methods [2] including simplex algorithms [21,
14], Hooke&Jeeves [8].

When working on ES-based MMO, the first point is the
choice of the ES, before we add some tricks specifically for
MMO: which algorithm, which population size λ, which se-
lection rate µ/λ. We point out that our theoretical analysis
is independent of the ES; this choice only matters for the
experimental part. For choosing λ, it is known that in the
MMO setting, λ large reduces the risk of poor local minima
[22]. However, as the fitness functions considered in [18] and
adopted here for the sake of comparison are locally simple,
we use a simple ES, better than sophisticated variants in
that case: the 1+1-ES with one-fifth rule [17]. Second, we
have to choose how to adapt an ES to MMO. The main al-
gorithms for MMO are as follows: clearing [16], including
the modified clearing approach proposed in [18]; this is con-
sidered as a niching mechanism; clustering [25]; crowding
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[3], including deterministic [12] and probabilistic [13] ver-
sions; sharing [5]; species conserving genetic algorithms [11];
and the classical restarts. The detailed presentation of all
these algorithms is beyond the scope of this paper. They all
depend on various parameters and are almost beyond theo-
retical analysis due to their complicated dynamics. We here
propose some simple rules which can be analyzed efficiently
and provide state of the art results. We will compare our
results to those in the survey [18] and refer to [18] for a
detailed description of all algorithms above. Importantly,
we use a murder operator in our restart algorithms; this
operator “kills” individuals too close to a previously found
optimum, and it is analogous to a parameter used in the
modified clearing which outperformed by far all other al-
gorithms in the comparative study [18]. As this parameter
is tuned for our testbed, it is of course an unfair compar-
ison with algorithms which have no such parameter. Our
conclusion is therefore not that our approach is better than
all published approaches; our conclusion is just that we can
design a restart algorithm, with theoretical guarantees, and
proofs of superiority of the quasi-random restart over the
random restart, and with state of the art performance with
this context of a parameter d which essentially quantifies our
prior knowledge on a minimal distance between two optima.

1.2 Quasi-random (QR) points
Quasi-random points provide a convergence as 1/n instead

of 1/
√
n in numerical integration, within logarithmic factors.

QR points are used in random search [15]; and later they
we used in the initialization [9, 4] or in the mutations [20,
19] of evolution strategies. [20, 19] pointed out that ”mod-
ern” QR points [10], using e.g. scrambling, are much better
than old versions of quasi-random points. A quasi-random
sequence is a sequence of points with some uniformity prop-
erties that will be recalled in this paper. Following [24, 19],
all QR sequences in this paper are Halton sequences with
random scrambling. Halton sequences[6] are the multidi-
mensional extension of Van Der Corput’s sequences[23]. We
first define Van Der Corput’s sequence. Consider p a prime
number. The following procedure generates the nth element
vdcn,p ∈ [0, 1] of the Van Der Corput sequence in basis p:

write n in basis p: n = dkdk−1 . . . d1, i.e. n =
∑k

i=0 dip
i

with di ∈ [[0, p − 1]]; define vn,p = 0.d1d2 . . . dk in ba-

sis p, i.e. vn,p =
∑k

i=1 dip
−i. For moderate values of

n and large values of d, an improvement termed scram-
bling is often used; instead of vn,p as above, define vn,p as
vn,p = 0.π(d1)π(d2) . . . π(dk) where π is some permutation of
[[0, p−1]] such that π(0) = 0 in order to ensure ∀n, vn,p 6= 0.
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The Halton sequence generalizes the Van Der Corput se-
quence to dimension D by using one different prime number
per dimension. Consider pi the ith prime number. Then,
hn, the nth element of a Halton sequence in dimension D,
is hn = (vn,p1 , vn,p2 , . . . , vn,pD ) ∈ [0, 1]D. The scrambled-
Halton sequence used in this paper is the use of a ran-
domly drawn permutation for each i ∈ [[1, D]]; more sophis-
ticated versions exist. The N th Hammersley point set[7] is
{hammN,1,hammN,2, . . . ,hammN,N} where hammN,n is de-
fined by hammN,n = ((n− 1)/N, vn,p1 , vn,p2 , . . . , vn,pD−1).

2. CONCLUSION
The first conclusion is the superiority of quasi-random

restarts over random restarts in nearly all tested settings.
The second conclusion is that we could not find any supe-
riority of clearing or modified clearing approaches over sim-
ple restarts; however, we have had to take care of removing
restarts close to previously found optima. This conclusion is
limited to sequential optimization; it might be the case that
clearing and modified clearing benefit from parallelization
more than the simple restart approaches.
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