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ABSTRACT
A number of diversity measures used in evolutionary computing
suffer from ‘mis-measuring’ the diversity of populations. In this
paper, we identify and demonstrate this problem using a carefully
engineered test suite of six differently arranged populations. We
also propose a new measure, called Population Diversity Index
(PDI), that solves the problem. We show that sorting the test con-
figurations by their PDI value we obtain a correct ranking (i.e.,
a natural one, conformant with the human-perceived order). PDI
also allows for a comparison between populations of different sizes
and genome-dimensions, and its relation to the uniform distribution
makes the calculated diversity values easy to interpret.
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I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
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1. INTRODUCTION
In this paper we identify, demonstrate and solve a problem with

the current measures of population diversity in evolutionary com-
puting. Existing diversity measures can sometimes ‘mis-measure’
the diversity of populations. To be specific, comparing the diversity
of two given populations can lead to a ranking different from the
natural one – the one a human experimenter would make by look-
ing the population plots. Obviously, this could be seen as the fault
of the human eye, and one could welcome a mathematically well
founded comparison as a fix. However, we argue that this is not the
right interpretation. To substantiate our argument, we hand-craft a
number of test configurations (differently arranged populations in
a 2D space) in such a way that the spread of the population in each
configuration is clearly different.

On a conceptual level, we introduce the notion of conformity
with respect to population diversity measures. We call a diversity
measure conformant if it ranks different populations according to
the human eye. Furthermore, we demonstrate that the five most
commonly used diversity measures in the genotype space, all have
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conformity problems. Finally, we introduce a new diversity mea-
sure called Population Diversity Index (PDI), intended to fix this.
The experimental comparison shows that it is indeed highly corre-
lated with the perceived diversity of a population.

2. CURRENT DIVERSITY MEASURES
The diversity of a population can be measured either in the geno-

typic space (measuring the variance in genomes), or in the pheno-
typic space (measuring the variance in fitness). Since an infinite
number of genomes can map to a single fitness, measures based
on the genotypic space provide more information about the spread
of the population than phenotypic measures. Therefore, we focus
on genotypic diversity measures. The class of genotypic diversity
measures can be divided into two sub-classes, namely Genome-
based measures and Gene-based measures. Genome-based mea-
sures treat the genome as a whole, while Gene-based measure as-
sess one gene at a time and calculate the average of these values.

Most often, genome-based measures are based on a distance mea-
sure to indicate the difference between two genomes. For example,
the commonly used pairwise Hamming distance can be calculated
by summing the Hamming distances of all possible pairs in the pop-
ulation. It is mainly used when the genome is a binary vector, but
we can use the Manhattan distance (PMD) or Euclidean distance
(PED) instead to deal with real-values representations. Another
approach is to measure Distance to Population Centroid (PDC)[4].
The most commonly used gene-based measures are: Population In-
ertia (PI) [2] and Discretized Gene-based Entropy (DGE) [1].

Although each measure is valid way of calculating diversity, their
levels of conformity differ, and their values, in some cases, are not
intuitive. To illustrate conformity of these measures, we use six
populations of 100 individuals in the [0, 1]2 genotypic space (Fig-
ure 1). The figures 1.1 to 1.6 are ordered by decreasing perceived
diversity of their corresponding populations. Arrangement 1 shows
a uniformly distributed population over the search space (highest
diversity, as one would intuitively determine), arrangement 6 de-
picts a fully converged population (with, naturally, lowest diver-
sity), while arrangements 2 to 5 show populations with decreasing
perceived diversity. Corresponding diversity values, by the mea-
sures we discussed so far in this paper, are presented in Table 1.
None of the measures order the example populations of Figure 1 in
a descending order of perceived diversity, i.e. they fail to capture
perceived diversity in at least one sense. In general, the results show
that Gene-based measures can not deal with coordinate aligned pat-
tern (such as in the test cases), and centroid-based approaches can
not deal with multiple clusters. The most conform is Discretized
Gene-based Entropy, since it captures most of the perceived diver-
sity changes. However, its gene-based approach causes problems
in case 5. To overcome this limitation, we introduce a new diver-
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Table 1: Diversity Values of the Arrangements
Arrangement

Measure 1 2 3 4 5 6
PMD 0.330 0.328 0.418 0.423 0.423 0.00
PED 0.328 0.386 0.434 0.443 0.591 0.00
PC 0.269 0.265 0.392 0.406 0.406 0.00
PI 0.165 0.169 0.310 0.330 0.330 0.00
DGE (b = 10) 0.721 0.616 0.434 0.428 0.428 0.00
PDI (ε = 0.001) 0.972 0.856 0.679 0.590 0.394 0.00

sity measure called Population Diversity Index (PDI) that treats the
genome as a whole, in contrast to one gene at a time.

3. POPULATION DIVERSITY INDEX
To make this new measure conform to the perceived diversity,

and easy to interpret, we want to define it in such a way that it is
equal to one on a uniformly distributed population, and equal to
zero if the data is concentrated in one point. Since the Shannon
entropy has exactly these properties, this new measure of diversity
is derived using that as a basis. Furthermore, we extend it to cope
with real-valued genes and to conform to perceived diversity, we
use the perceived similarity between pairs of individuals. Let us
consider a set ofm discrete samples P , and the set of unique values
of P denoted by U . The Shannon entropy of P is calculated as
follows.

H(P ) = −
X
ū∈U

(occ(ū)/m) · log (occ(ū)/m)

where occ(ū) is the number of times the vector ū (∈ [0, 1]n) occurs
in P . Since, by definition, each vector ū from U is present in P
occ(ū) times, rather than enumerating over the unique vectors ū
in U , Hν(P ) can be rewritten to enumerate over all vectors x̄ in
P . Furthermore, as the maximum entropy of a sample of size m
is equal to log(m), we can define the normalized entropy (Hν ),
independent of the size of P , as:

Hν(P ) =− (

mX
i=1

log (occ(x̄i)/m))/(m · log(m)) (1)

In order to handle continuous valued samples, i.e. to produce en-
tropy values other than log(m), we would like to replace the occ(x̄i)
function in Equation 1 with another function we denote by p(x̄i).
p(x̄i) is to be based on how close a sample x̄i is to members of P
(including itself). Population Diversity Index (PDI) is defined by
inserting p(x̄i) into Equation 1:

PDI =− (

mX
i=1

log(p(x̄i)))/(m · log(m)) (2)

To calculate how close two individuals (x̄1, x̄2) are, we consider the
Euclidean distance (d(x̄1, x̄2)) between them (other distance mea-
sures are also possible). Since perceived diversity is closely related
to the perceived similarity, we base our measure of diversity on
Shepard’s Universal Law of Generalization [3]. Accordingly, the
perceived similarity between two objects has an exponential rela-
tion to their corresponding distance. Thus, we define the similarity
between two individuals in the population as:

s(x̄1, x̄2) = e−ω·d(x̄1,x̄2) , with ω = −log(ε)/αn (3)

where ε ∈ (0, 1) is a scaling parameter, and αn the expected
distance between any two individuals if they were uniformly dis-
tributed over [0, 1]n. This definition of similarity ensures that if the
distance between two samples is lower than the expected distance
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Figure 1: Possible arrangements of 100 individuals ∈ [0, 1]2

αn, then the corresponding similarity will be higher than ε. Simi-
larly, if the distance is higher than αn, similarity will be lower than
ε. Also, if two samples are identical, their similarity will be equal
to one. For each individual x̄i in the population, we calculate p̂i,
the average similarity of x̄i to members of the population:

p̂(x̄i) =

mX
j=1

s(x̄i, x̄j)/m (4)

Furthermore, we denote the expected similarity when the distribu-
tion of the population is uniform by βε,n. Since we would like the
value for p(x̄i) in Equation 2 to be equal to 1

m
, if and only if the

distribution of the population is uniform, p̂(x̄i) needs to be trans-
formed in such a way that βε,n is transformed into 1

m
. A function

that accomplishes this is: f(p̂(x̄i)) = p̂(x̄i)
ς , where ςis equal to:

ς =− log(m)/log(βε,n) (5)

Therefore PDI becomes:1

PDI =−
Pm
i=1 log(p(x̄i))

m · log(m)
= −

Pm
i=1 log(p̂(x̄i)

ς)

m · log(m)
(6)

PDI is not restricted to boolean or real-valued genotypes, but can be
extended to incorporate any genome for which an appropriate dis-
tance measure can be defined (e.g., a population of trees). General-
izability and its high level of conformity are the main advantages of
using the Population Diversity Index for measuring and assessing
diversity.
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1Since neither α nor β have closed forms, they need to be approx-
imated. An approximation for various dimensions can be found at:
http://www.cs.vu.nl/~sksmit
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