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ABSTRACT
Creating gaits for legged robots is an important task to en-
able robots to access rugged terrain, yet designing such gaits
by hand is a challenging and time-consuming process. In this
paper we investigate various algorithms for automating the
creation of quadruped gaits. Because many robots do not
have accurate simulators, we test gait learning algorithms
entirely on a physical robot. We compare the performance
of two classes of learning gaits: locally searching parameter-
ized motion models and evolving artificial neural networks
with the HyperNEAT generative encoding. All parameter
search methods outperform a manually-designed reference
gait, but HyperNEAT performs better still, producing gaits
nearly 9 times faster than the reference gait.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION AND BACKGROUND
Various machine learning techniques have proved to be ef-

fective at generating gaits for legged robots. Kohl and Stone
presented a policy gradient reinforcement learning approach
for generating a fast walk on legged robots[4], which we im-
plemented for comparison. Others have evolved gaits for
legged robots, producing competitive results [1, 2, 3]. In
fact, an evolved gait was used in the first commercially-
available version of Sony’s AIBO robot [3].

In this paper we compare the performance of two differ-
ent methods of learning gaits: parameterized gaits optimized
with six different learning methods, and gaits generated by
evolving neural networks with the HyperNEAT generative
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Average Std. Dev.

Previous hand-coded gait 5.16 –
Random search 9.40 6.83

Uniform Random Hill Climbing 7.83 4.56
Gaussian Random Hill Climbing 10.03 6.00

Policy Gradient Descent 6.32 7.39
Nelder-Mead simplex 12.32 3.35

Linear Regression 14.01 12.88
Evolved Neural Network

(HyperNEAT) 29.26 6.37

Table 1: The average and standard deviation of
the best gaits found for each algorithm during each
of three runs, in body lengths/minute. Videos of
the gaits evolved for this robot can be viewed at
http://bit.ly/geccogait

encoding [6]. While some of these methods, such as Hy-
perNEAT, have been tested in simulation [1], we investigate
how they perform when evolving on a physical robot.

The metric for evaluating gaits was their average speed,
which was measured as the Euclidian distance the robot
moved during a 12-second run. In order to measure the
start and end position in the same pose, and to ensure fair
fitness evaluations with as little noise as possible, we linearly
interpolated the motion of the robot between the ready po-
sition and the commanded gait for the first one second and
the last two seconds of the 12 seconds of motion.

2. GAIT GENERATION AND LEARNING

2.1 Parameterized Gaits
By a parameterized gait, we mean a gait produced by a

parameterized function g(t; θ). After some experimentation,
we settled on one particular family of gaits consisting of
a sine wave root pattern and five parameters: amplitude,
period, and multipliers for front, left, and inner motors.

We evaluated a total of six different learning algorithms
for the parameterized motion models. All methods were
started at the same three initial θ vectors in the three runs.
The six learning algorithms for the parameterized motion
models are as follows:
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Random: This baseline method randomly generates pa-
rameter vectors in the allowable range for every trial.

Uniform random hill climbing : This method chooses the
next θ by randomly choosing one parameter to adjust and
replacing it with a new value chosen with uniform probabil-
ity in the allowable range.

Gaussian random hill climbing : Same as Uniform random
hill climbing, except the next θ is generated by adding ran-
dom Gaussian noise to the current best gait.

N-dimensional policy gradient ascent : We implemented
Kohl and Stone’s [4] method for local gradient ascent for
gait learning with noisy fitness evaluations.

Nelder-Mead simplex method : The Nelder-Mead simplex
method is a standard learning algorithm; see [5] for details.

Linear regression: This method fits a linear model from
parameter vector to fitness and predicts the most promising
direction for further evaluation.

2.2 HyperNEAT Gait Generation & Learning
The ANN configuration follows previous studies that evolved

gaits with HyperNEAT in simulation [1]. The inputs to the
ANN substrate were the current commanded angles of each
of the 9 joints of the robot and a sine and cosine wave (to
facilitate the production of periodic behaviors). The sine
and cosine waves had a period of about half a second.

As with the parameterized methods, three runs of Hyper-
NEAT were performed. The population size for HyperNEAT
was 9 and runs lasted 20 generations. These numbers are
small, but were necessarily constrained given how much time
it took to conduct evolution directly on a real robot.

3. RESULTS AND DISCUSSION
The results for all gaits are shown in Table 1. The best

overall gait for the parameterized methods was found by
linear regression, which also had the highest average per-
formance. The Nelder-Mead simplex also performed well.
The other local search methods did not outperform random
search; however, all methods did manage to explore enough
of the parameter space to improve on the previous hand-
coded gait in at least one of the three runs.

Overall the HyperNEAT gaits were the fastest by far,
beating all the parameterized models when comparing ei-
ther average or best gaits. We believe that this is because
HyperNEAT was allowed to explore a much richer space of
motions, but did so while still utilizing symmetries when
advantageous. The single best gait found during this study
had a speed of 45.72 body lengths/minute, 8.9 times faster
than the hand-coded gait.

The evaluation of the higher-performing HyperNEAT gaits
was more noisy than for the parameterized gaits, which
made learning difficult (Figure 1). For example, we tested
an example HyperNEAT generation-champion gait 11 times
and found that its mean performance was 26 body lengths
per minute (± 13 SD), but it had a max of 38 and a min
of 3. Many effective HyperNEAT gaits were not preserved
across generations because if performance in one trial was
poor, the genome was unlikely to be selected for.

4. CONCLUSION AND FUTURE WORK
HyperNEAT produced higher-performing gaits than all

of the parameterized methods, perhaps because it can ex-
plore a much larger space of possibilities than the more re-
strictive 5-dimensional parameterized space. HyperNEAT
gaits tended to produce more complex sequences of motor
commands, with different frequencies and degrees of coordi-
nation, whereas the parameterized gaits were restricted to
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Figure 1: Average fitness (± SE) of the highest per-
forming individual in the population for each genera-
tion of HyperNEAT runs. The fitness of many high-
performing HyperNEAT gaits were halved if the gait
overly stressed the motors, so the true performance
without this penalty would be much higher.

scaling single-frequency sine waves and could only produce
certain types of motor regularities.

Because all trials were done in hardware, it was difficult
to gather the many trials that would be necessary to prop-
erly rank the methods statistically. One direction for future
work could be to obtain many more trials. However, a more
effective extension might be to combine frequent trials in
simulation with infrequent trials in hardware.
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