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ABSTRACT
The paper presents a case study in an industrially important
application domain – the optimization of catalytic materi-
als. Though evolutionary algorithms are the by far most fre-
quent approach to optimization tasks in that domain, they
are challenged by mixing continuous and discrete variables,
and especially by a large number of constraints. The paper
describes the various kinds of encountered constraints, and
explains constraint handling in GENACAT, one of evolu-
tionary optimization systems developed specifically for cat-
alyst optimization. In particular, it is shown that the inter-
play between cardinality constraints and linear equality and
inequality constraints allows GENACAT to efficienlty deter-
mine the set of feasible solutions, and to split the original
optimization task into a sequence of discrete and continuous
optimization. Finally, the genetic operations employed in
the discrete optimization are sketched, among which cross-
over is based on an assumption about the importance of
the choice of sets of continuous variables in the cardinality
constraints.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Constrained
optimization; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

General Terms
Algorithms
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1. INTRODUCTION
In chemical engineering, much effort is devoted to increas-

ing the performance of industrially important reactions, i.e.,
to achieving a higher yield of the desired reaction prod-
ucts without higher material or energy costs. Over 90%
of chemical processes use a catalyst to this end. Catalysts
are materials that decrease the energy needed to activate
a chemical reaction without being themselves consumed in
it. They typically consist of several components with dif-
ferent purpose, which can be selected from among many
substances. Chemical properties of those substances con-
strain the possible ratios of their proportions, but they still
allow for an infinite number of catalyst compositions. More-
over, the catalyst can usually be prepared from the individ-
ual components in a number of ways, and the preparation
method also influences its performance in the chemical pro-
cess. Consequently, the search for new catalytic materials
leading to optimal performance of a chemical reaction en-
tails high-dimensional constrained optimization tasks. Their
objective functions are black-box functions, with values ob-
tained empirically. Commonly used smooth optimization
methods are not convenient to this end. Indeed, the dis-
cernibillity of the obtained measurements is too low to al-
low obtaining sufficiently precise numerical estimates of gra-
dients or second order derivatives of the empirical objec-
tive function. Therefore, methods not requiring derivatives
have been employed to solve those optimization tasks - both
deterministic ones, in particular the simplex method, and
stochastic ones, such as simulated annealing, or evolution-
ary algorithms (EA) [1]. Evolutionary, especially genetic
algorithms (GA) are encountered most frequently, but their
application to this area is far from any standard methodol-
ogy. Main difficulties on a way to such a methodology are
mixed optimization with respect to continuous and discrete
variables, and constraints.

This paper deals with the latter difficulty. It describes
how the constraints faced by the optimization of catalytic
materials are tackled in the evolutionary optimization sys-
tem GENACAT, developed in recent years at the Leibniz
Institute for Catalysis in Rostock, in collaboration with the
Institute for Computer Science in Prague. The overall func-
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tionality of the system has been outlined, from the point of
view of the application domain, in the Journal of Chemi-
cal Information and Modeling [12]. The present paper, on
the other hand, deals solely with the method of constraint
handling adopted in GENACAT, and with its incorporation
into evolutionary optimization.

Due to the specific meaning conveyed by coordinates of
points in the input space of the objective function, it is
quite difficult to use general EA software, such as the Global
Optimization Toolbox of Matlab [17]. Indeed, such gen-
eral software only optimizes functions with input spaces of
low-level data types, such as vectors of real numbers and
bit-strings. And encoding the qualitative and quantitative
compositions of catalytic materials, and their preparation
and reaction conditions with low-level data types is a te-
dious and error-prone activity. Furthermore, it requires a
great deal of mathematical erudition. Therefore, it is not
surprising that general EA software has been used rarely in
catalysis: at the very beginning [18, 19], in a recent appli-
cation of genetic programming [2], and in most cases when
multiobjective genetic optimization was performed [4, 9], es-
pecially if the popular non-dominated sorting genetic algo-
rithm was used [5, 15]. Apart from those exceptions, the
application of EA in this area took the route of develop-
ing specific algorithms for the optimization of catalytic ma-
terials. Although such algorithms have been developed in
various institutions throughout the world [16, 20, 25], main
contributions to their development came from the Institute
for Catalytic and Environmental Research in France [3, 6,
21], the Institute of Chemical Technology in Spain [7, 8, 23,
24], and the Leibniz Institute for Catalysis (LIKAT) in Ger-
many [10, 12, 22, 26]. The most recent contribution of the
last mentioned institution is the above mentioned system
GENACAT.

In the next section, the various kinds of constraints en-
countered in the optimization of catalytic materials are sur-
veyed. The approach to constraint handling in GENACAT
is presented in Section 3. In particular, 3.1 explains how all
feasible solutions are determined, and 3.2 how sets of feasible
solutions are evolved.

2. CONSTRAINTS FACED IN CATALYST
OPTIMIZATION

In the optimization of catalytic materials, the objective
function (in evolutionary optimization called fitness) is some
empirical performance measure of the catalytic material,
most frequently yield of (some of) the reaction product(s).
The individual coordinates of points in the input space of
the objective function typically convey some of the following
meanings [1, 11]:

(i) Qualitative composition of the catalytic material, i.e.,
of which components it consists, and what is its sup-
port.

(ii) Quantitative composition of the catalytic material, i.e.,
the fractions of the various components mentioned in
(i).

(iii) Preparation of the catalytic material, its individual
steps and their quantitative characterizations, such as
temperatures or durations.

(iv) Reaction conditions of the catalyzed reaction.

The random variables corresponding to (i) are always dis-
crete and finitely-valued, the random variables correspond-

ing to (ii) are always continuous, whereas the random vari-
ables corresponding to (iii)–(iv) can be of both kinds. De-
noting d the vector of input coordinates corresponding to
discrete random variables and x the vector of input coor-
dinates corresponding to continuous random variables, the
considered optimization task can be formulated as:

maximize f(d, x) subject to explicit constraints c1, . . . , cnc ,
(1)

An example of a real optimization task of that kind is given
in Figure 1.

The term explicit constraints employed for the constraints
c1, . . . , cnc in (1) refers to the fact that the optimization is
constrained also implicitely, through interval constraints on
the value sets of the involved continuous random variables
are. Taking into account different kinds of encountered ex-
plicit constraints, we differentiate altogether 5 kinds of con-
straints in the optimization of catalytic materials:

1. Bounded-interval constraints on the value sets of the
continuous random variables. Most frequently, the
lower bound of the interval is 0, thus Val(Xi) = [0, c]
with c > 0 (in the example in Figure 1, this is the
case for the variables X1 − X41, i.e., for 41 among the
42 involved continuous variables). In the sequel, the
set of involved continuous random variables with this
property will be denoted X0.

2. Equality or inequality constraints interconnecting the
components of the vector d, which are realizations of
discrete random variables D1, . . . , Dnd (in Figure 1,
there is one such constraint: c97). They delimit, in the
cartesian product Val(D1)×· · ·×Val(Dnd ) of the finite
value sets of D1, . . . , Dnd , a subset D of admissible
values of d.

3. For each fixed d ∈ D, systems of linear equations or
inequalities for the vector x,

A(d)
= x = b(d)

= , (2)

A
(d)
≤ x ≤ b

(d)
≤ , (3)

where A(d)
= , A

(d)
≤ are matrices with as many columns

as is the dimension of x (in Figure 1, (2) corresponds
to the constraints c92 − c95, whereas (3) corresponds
to the constraint c96). Observe that for a fixed d, the
components of d occurring in (2) and (3) are constants
(cf. c92 in Figure 1).

We would like to emphasize that the linear equations
and inequalities in (2)–(3) actually allow to describe
constraints

g(d)
= (x) = 0 or g

(d)
≤ (x) ≤ 0, (4)

where g(d)
= and g

(d)
≤ are real functions that are either

continuous or have a finite number of discontinuities
of the first kind, i.e., they can be made left- and right-
continuous in the discontinuities (this is always true
for nonlinear constraints encountered in catalysis). In-
deed, such functions can be aproximated with piece-
wise-linear functions, and the linear piece containing
x can be indicated with the value of an additional dis-
crete random variable. This leads to increasing the
dimension of d and to a different set D, whereas the
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Fitness: Y (product yield)
Continuous variables:
Xi: proportion of the i-th compo-
nent from the components pool avail-
able for the catalytic material, i =
1, . . . , 37, Val(Xi) = [0, 0.1] for i =
1, . . . , 22, Val(Xi) = [0, 0.003] for i =
23, . . . , 37;
X38: overall proportion of compo-
nents belonging to precious metals,
Val(X38) = [0, 0.003];
X39: overall proportion of com-
ponents belonging to alkaline earth
metals or lanthanoids, Val(X39) =
[0, 0.05];
X40: proportion of the lower valence
element in a fixed pair of alkaline earth
metals or lanthanoids, Val(X40) =
[0, 0.01];
X41: proportion of the higher valence
element in a fixed pair of alkaline earth
metals or lanthanoids, Val(X41) =
[0, 0.05];
X42: overall proportion of com-
ponents not belonging to precious
or to alkaline earth metals or lan-
thanoids, Val(X42) = = [0.003, 0.05];
Discrete variables:
D1: choice of a material serving as
support of the catalyst, Val(D1) =

{material1, material2};
D2: proportion of support; Val(D2) =
{0.95,0.99};
D3: choice of a fixed pair of al-
kaline earth metals or lanthanoids,
Val(D3) = {(i-th component, i′-
thcomponent): (29 ≤ i ≤ 31 & 32 ≤
i′ ≤ 33) ∨ (32 ≤ i ≤ 33 & 34 ≤ i′ ≤
37)};
D4: number of included compo-
nents belonging to precious metals,
Val(D4) = {0, 1};
D5: number of included components
belonging to alkaline earth metals or
lanthanoids, Val(D5) = {0, 1, 2};
D6: number of included fixed pairs of
alkaline earth metals or lanthanoids,
Val(D6) = {0, 1};
D7: number of included components
belonging neither to precious metals,
nor to alkaline earth metals or lan-
thanoids, Val(D7) = {1, 2, 3, 4};
D8: overall number of all included
components, Val(D8) = {2, 3, 4};
Constraints:
ci: probability distribution of Xi on
[0.003, 0.1] is uniform, i = 1, . . . , 22;
ci: probability distribution of Xi on
(0, 0.003] is uniform, i = 23, . . . , 37;
c38: joint probability distribution of

(X40, X41) on {(x, x′) : 0 ≤ x ≤
0.01 & 0 ≤ x′ ≤ 0.05 & 20x ≤ x′ ≤
50x} is uniform;
ci: P (0 < Xi−38 < 0.003) = 0, i =
39, . . . , 60;
ci:P (X1 > 0.03) = 3 ∗ P (Xi−59 >
0.03), i = 61, . . . , 81;
cj : probability distribution of Dj−60

on Val(Dj−60) is uniform, j =
82, . . . , 84;
c85: probability distribution of D4 on
{0, 1} is (0.8, 0.2);
c86: joint probability distribution of
(D5, D6) on Val(D5)×Val(D6)={(0, 0),
(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)} is ( 1

3
,

1
3
, 2

9
, 1

9
, 0);

c87: probability distribution of D8 on
{2, 3, 4} is (0.45, 0.45, 0.1);
c88: |{i : 23 ≤ i ≤ 28 & xi > 0}| = d4;
c89: |{i : 29 ≤ i ≤ 37 & xi > 0}| = d5;
c90: |{i : i = 40 & xi > 0}| = d6;
c91: |{i : 1 ≤ i ≤ 22 & xi > 0}| = d7;
c92: d2 + x38 + x39 + x42 = 1;
c93: x1 + x2 + · · · + x22 = x42;
c94: x23 + x24 + · · · + x28 = x38;
c95: x29 +x30 + · · ·+x37 +x40 +x41 =
x39;
c96: 20x40 ≤ x41 ≤ 50x40;
c97: d4 + d5 + d6 + d7 = d8.

Figure 1: Example of a real task in the optimization of catalytic materials

equations and inequalities (4) are replaced with addi-
tional rows in (2)–(3). Due to the comparatively low
discernibility of catalytic measurements, the piecewise-

linear approximation of the functions g(d)
= , resp. g

(d)
≤ ,

will even for a small number of linear pieces typically
lead to an approximation error that is lower than the
measurement error.

4. For some mutually exclusive sets of variables S ⊂ X0,
constraints on the cardinality |S>0| of the set

S>0 = {X ∈ S : X > 0}, (5)

which take the form of an equality

(∀d ∈ D)|S>0| = s(d), (6)

with an S-specific fuction s : D → N0 (in Figure 1:
the constraints c88 − c91). Consequently, for each fixed
d ∈ D, the cardinality of S0 is constant. Observe that
(6) substantially simplifies solving the system (2)–(3)

of equations and inequalities: It allows to solve
` |S|

s(d)

´

lower-dimensional systems instead, corresponding to
the

` |S|
s(d)

´
possible choices of S0. In each such system

the |S| − s(d) columns corresponding to the variables

from S \ S0 are left out from the matrix A(d)
= in (2)

and the matrix A
(d)
≤ in (3). To illustrate how large

simplification this may entail, consider the constraint
c91 in Figure 1. Alone due to this single constraint, 18
to 21 columns are left out from among the 42 columns
of the matrix A(d)

= , corresponding to the constraints

c92 − c95, and the matrix A
(d)
≤ , corresponding to the

constraint c96 (18 columns if d7 = 4,. . . ,21 columns if
d7 = 1).

5. Required distributions of the involved discrete and con-
tinuous random variables (in Figure 1: the constraints
c1 − c87). By default, the distribution of each ran-
dom variable, no matter whether discrete or continu-
ous, is required to be uniform. However, this can be
explictely changed. The distributions influence how
the 1st generation of the evolutionary algorithm looks
out, and what is the result of mutation. However, it
is important to realize that they are constraints on
the underlying random variables, not on their realiza-
tions, even not on populations of their realizations, like
those produced in evolutionary algorithms. Hence, a
vector (x, d) can never be unfeasible with respect to
required distributions, nor can be a population of such
vectors, irrespectively of how the empirical distribu-
tions of their coordinates differ from the required dis-
tributions of the underlying random variables.

3. CONSTRAINT HANDLING IN THE
SYSTEM “GENACAT”

In GENACAT, a specific GA precisely tailored to the op-
timization task being solved is generated by a program gen-
erator, based on a user specification of the task in a catalyst
description language (CDL). The implementation of the pro-
gram generator, the CDL-language, as well as the creating
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and processing of CDL-descriptions have been presented in
[12]. Here on the other hand, we explain the method used
in GENACAT to solve the mixed constrained optimization
task (1). It is based on the fact that for each fixed d ∈ D and
each choice of S0 in any cardinality constraint (6), the set
of feasible solutions to (2)–(3) is a polyhedron, determined
by some matrix AP and vector bP

P = {ξ : AP ξ ≤ bP }. (7)

Each such polyhedron can be empty, and each has its spe-
cific dimension, ranging between 1 (closed interval) and the
number of input coordinates corresponding to continuous
random variables.

3.1 Finding Feasible Solution Polyhedra
If a solution polyhedron is described with (7), then its

feasibility (i.e., non-emptiness) is invariant with respect to
any permutation of columns of AP , and to any permutation
of rows of (AP bP ). Moreover, the relation ≈ defined

P ≈ Q iff (AQbQ) can be obtained from (AP bP ) by

a permutation of columns of AP , followed by

a permutation of rows of the result and of bP

(8)

is an equivalence, partitioning the set of polyhedra into dis-
joint classes. This property plays a key role in GENACAT
because only one representative from each class needs to be
checked for non-emptiness.

In Figure 2, the difference between the overall number
of polyhedra and the number of their equivalence classes,
as well as between the number of feasible polyhedra and
the number of equivalence classes with feasible polyhedra
is illustrated on 5 example catalyst optimization tasks that
have been solved by the system GENACAT. Among them,
the task nr. 5 is the one presented above in Figure 1.

3.2 Evolution of Feasible Polyhedra
On the set of feasible polyhedra, discrete genetic opti-

mization is performed, using operations selection, mutation
and crossover developed specifically to this end. Each of
the polyhedra forming the population obtained in this way
contains a subpopulation of combinations of values of contin-
uous variables found by linearly constrained continuous ge-
netic optimization (we used its implementation in the Global
Optimization Toolbox of Matlab [17] to this end). The union
of all such subpopulations combined with the combinations
of values of discrete variables corresponding to the respective
polyhedra, form together the final population of solutions to
the optimization task. The specific genetic operations em-
ployed in the discrete optimization are defined as follows:

Selection is in the first generation uniform, in subsequent
generations proportional to the importance of the polyhe-
dron due to points from earlier generations that it contains.
As a measure of that importance, the difference between
the fitness of a point and the minimal fitness encountered in
previous generations is taken, summed over points with the
combination of values of the discrete variables corresponding
to the polyhedron.

Mutation consists in replacing an existing polyhedron with
a uniformly selected nonempty one. The values of continu-
ous variables forming a point in that polyhedron are again
obtained by linearly constrained continuous genetic opti-
mization. If the mutation rate is μ, then a proportion μ

Example tasks
1 2 3 4 5

continuous 11 14 28 29 42
variables
input space 23 32 51 53 97
constraints

Polyhedra
all 22275 1512 5.1 · 106 6.1 · 106 583 · 106

feasible 22110 1000 224620 171140 282810

Classes of polyhedra
all 6 36 1323 756 480
feasible 5 26 312 178 60

Figure 2: Top: comparison between the number of
(all and feasible) polyhedra and their equivalence
classes for 5 example catalyst optimization tasks
solved by the system GENACAT, including the task
presented in Figure 1 (task 5). Bottom: End-users
are not confronted with the concept of equivalence
classes, that is why the graphical interface control-
ling the evolutionary optimization by GENACAT
reports only the numbers of solution polyhedra

of the population is selected in this way, and the proportion
1 − μ is selected using the above proportional selection.

Crossover relies on the fact that a solution polyhedron P
is determined on the one hand by the choice of the vector
d = dP of values of discrete variables, on the other hand
by the choice of the set S0 = SP

0 of continuous variables
in every cardinality constraint (6). We assume that for the
optimization of catalytic materials, the choice of the sets
of continuous variables is more important, and we suggest a
crossover operation that always exchanges exactly one of the
continuous variables corresponding to the parent polyhedra,
and attempts to include as high agreement with their vectors
of values of discrete variables as possible. Formally, denote
mp the number of columns of AP , and let xP,1, . . . , xP,mP

be the continuous variables corresponding to those columns.
If the crossover rate is λ, then for each pair P and P ′ of
solution polyhedra selected using the proportional selection,
a set of recombination offsprings is formed with probability
λ, in the following way:

(i) The set of candidate offsprings of P and P ′ is defined
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by

C(P, P ′) ={Q − solution polyhedron : Q �= ∅ &

& {xQ,1, . . . , xQ,mQ
} ⊂ {xP,1, . . . , xP,mP

}∪
∪ {xP ′,1, . . . , xP ′,mP ′ } &

& [(mQ = mP & |{xQ,1, . . . , xQ,mQ
}∩

∩ {xP,1, . . . , xP,mP
}| = mQ − 1)∨

∨ (mQ = mP ′ & |{xQ,1, . . . , xQ,mQ
}∩

∩ {xP ′,1, . . . , xP ′,mP ′ }| = mQ − 1)]}.
(9)

(ii) For each Q ∈ C(P, P ′), the uncertainty index of Q is
computed as

u(Q) = |{j : 1 ≤ j ≤ nd & dQ
j �∈ {dP

j , dP ′
j }}|. (10)

(iii) The final set of offsprings of P and P ′ is defined by

O(P, P ′) = {Q ∈ C(P, P ′) : u(Q) = min
Q′∈C(P,P ′)

u(Q′)}.
(11)

Due to the selection proportional to importance, the sub-
populations of combinations of continuous variables in poly-
hedra with high importance tend to increase, whereas the
subpopulations in polyhedra with low importance tend to
decrease or to disappear. This is illustrated in Figure 3 for
the example task introduced in Figure 1. For that task, the
genertated GA was run with a population size 96, given by
the number of available channels in the reactor in which the
catalysts were tested. The evolution was finished after 7
generations, when the number of found catalysts with suf-
ficiently high fitness (yield) was already satisfactory for the
chemists, in view of the cost of the evaluation of another gen-
eration. Figure 3 shows the development of the distribution
of subpopulation sizes during the 2nd − 7th generation.

4. CONCLUSIONS
This paper presented a case study in an industrially im-

portant application domain – the optimization of catalytic
materials. The optimization tasks occurring in that domain
are by far most frequently dealt with evolutionary algo-
rithms, and constraints pose one of key difficulties connected
with such tasks. The paper described the various kinds of
encountered constraints, and then explained constrain han-
dling in GENACAT, one of evolutionary optimization sys-
tems developed specifically for that application domain.

Most importantly, it was shown that the interplay between
cardinality constraints and linear equality and inequality
constraints allows GENACAT to efficienlty determine the
set of feasible solutions, and to split the original optimiza-
tion task into a sequence of discrete and continuous opti-
mization. Moreover, the definition of the crossover opera-
tion employed in the discrete optimization is based on an
assumption about the importance of the choice of the sets
of continuous variables in the cardinality constraints.

At the same time, the case study reflects the specificity
of evolutionary optimization in catalysis, which was already
partially mentioned in the introduction. In particular:

1. GENACAT heavily relies on the specificity of con-
straints encountered in catalyst optimization, as well
as on the specific meaning of the coordinates of points

in the input space of the objective function. There-
fore, we were not interested in comparing the con-
straint handling approach implemented in GENACAT
with approaches implemented in publicly available sys-
tems, which do not take into account those specific
features, and employ low-level coding of points in the
input space.

2. The evaluation of objective functions used in catalysis
is costly and time-consuming. Typically, the evalua-
tion of one generation of catlytic materials needs sev-
eral days to several weeks, and costs several to many
thousands of euros. That is the reason why evolu-
tionary optimization usually runs only for 5-10 gener-
ations, till the costs of evaluating a next generation of
materials are not worth the expected improvement (cf.
Figure 3)

Finally, we would like to emphasize that another system
was used at LIKAT before GENACAT, in which constraints
were handled insufficently [22, 26]. And that dealing with
the various kinds of constraints described in Section 2 was
actually one of two main objectives of GENACAT develop-
ment, the other being its integration with surrogate model-
ing [13, 14].

5. ACKNOWLEDGMENTS
The research reported in this paper was supported by the

German Federal Ministry of Education and Research, as well
as by the Czech Science Foundation grants 201/08/0802 and
P202/11/1368.

6. REFERENCES
[1] M. Baerns and M. Holeňa. Combinatorial
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[14] M. Holeňa, D. Linke, and U. Rodemerck. Generator
approach to evolutionary optimization of catalysts and
its integration with surrogate modeling. Catalysis
Today, 159:84–95, 2011.

[15] K. Keyvanloo and J. Towfighi. Comparing the
catalytic performances of mixed molybdenum with
cerium and lanthanide oxides supported on hzsm-5 by
multiobjective optimization of catalyst compositions
using nondominated sorting genetic algorithm. Journal
of Analytical and Applied Pyrolysis, 88:140–148, 2010.

[16] G. Kirsten and W. Maier. Strategies for the discovery
of new catalysts with combinatorial chemistry. Applied
Surface Science, 223:87–101, 2004.

[17] The Mathworks, Inc. Global Optimization Toolbox 3,
2010.

[18] A. McLeod, M. Johnston, , and G. L.F. Development
of a genetic algorithm for molecular scale catalyst
design. Journal of Catalysis, 167:279–285, 1997.

[19] A. McLeod and G. L.F. Heterogeneous catalyst design
using stochastic optimization algorithms. Journal of
Chemical Information and Computer Science,
40:981–987, 2000.

[20] A. Ohrenberg, C. Törne, A. Schuppert, and B. Knab.
Application of data mining and evolutionary
optimization in catalyst discovery and
high-throughput experimentation – techniques,
strategies, and software. QSAR and Combinatorial
Science, 24:29–37, 2005.

[21] R. Pereira, F. Clerc, D. Farrusseng, J. Waal, and
T. Maschmeyer. Effect of genetic algorithm parameters
on the optimization of heterogeneous catalysts. QSAR
and Combinatorial Science, 24:45–57, 2005.

[22] U. Rodemerck, M. Baerns, and M. Holeňa. Application
of a genetic algorithm and a neural network for the
discovery and optimization of new solid catalytic
materials. Applied Surface Science, 223:168–174, 2004.

[23] J. Serra, L. Baumes, M. Moliner, P. Serna, and
A. Corma. Zeolite synthesis modelling with support
vector machines: a combinatorial approach.
Combinatorial Chemistry and High Throughput
Screening, 10:13–24, 2007.

[24] J. Serra, A. Chica, and A. Corma. Development of a
low temperature light paraffin isomerization catalysts
with improved resistance to water and sulphur by
combinatorial methods. Applied Catalysis A: General,
239:35–42, 2003.

[25] Y. Watanabe, Umegaki, T., Hashimoto, M., Omata,
K., and M. Yamada. Optimization of Cu oxide
catalysts for methanol synthesis by combinatorial tools
using 96 well microplates, artificial neural network and
genetic algorithm. Catalysis Today, 89:455–464, 2004.

[26] D. Wolf, O. Buyevskaya, and M. Baerns. An
evolutionary approach in the combinatorial selection
and optimization of catalytic materials. Applied
Catalyst A: General, 200:63–77, 2000.

339



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




