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ABSTRACT
Intelligent manufacturing is associated with a large number
of complex optimization problems and for this reason has got
a considerable research attention over the last decades. Most
of these problems are of combinatorial nature and have been
proved to be NP-complete. This paper deals with the flow
shop scheduling problem (FSSP) and the Job Shop Schedul-
ing Problem (JSSP). The objective of these problems is to
find an appropriate sequence to minimize the makespan,
which are defined as the time for completing a final oper-
ation. One major challenging issue is how to obtain the
high-quality global optimum. In order to refrain from the
premature convergence and being easily trapped into local
optimum, we are motivated to find high-quality solutions in
a reasonable computation time by exploiting Particle Swar-
m Optimization (PSO), Tabu Search (TS) and Simulated
Annealing (SA). We propose a new multi-structural hybrid
evolutionary framework, and derive HPTS algorithm as its
extension. Extensive experiments on different scale bench-
marks validate the effectiveness of our approaches, compared
with other well-established methods. The experimental re-
sults show that new upper bounds of the unsolved problems
are achieved in a relatively reasonable time. For example, in
30 Tailland’s and 43 OR-Library benchmarks, 7 new upper
bounds and 6 new upper bounds are obtained by the HPTS
algorithm, respectively.
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1. INTRODUCTION
In today’s complex manufacturing setting, with multiple

lines of products, each requiring many different steps and
machines for completion, the decision maker for the manu-
facturing plant must find a way to successfully manage re-
sources in order to produce products in the most efficient
way possible. The decision maker needs to design a pro-
duction schedule that promotes on-time delivery, and mini-
mizes objectives such as the flow time of a product. Out of
these concerns grew an area of studies known as the schedul-
ing problems. Intelligent manufacturing is associated with a
large number of complex optimization problems and for this
reason has got a considerable research attention over the last
decades. Most of these problems are of combinatorial nature
and have been proved to be NP-complete.

Flow-Shop Scheduling Problem (FSSP) is a combinato-
rial optimization problem and NP-complete [6]. The main
task of FSSP is to find a permutation schedule which mini-
mizes the maximum completion time of a sequence of N =
{J1, · · · Jn} jobs in an M -machine flow-shop. Every job has
M operations, and every machine has N jobs. Every job
executes its operations on every machine in the order of
M = {M1, · · ·Mm}. Every operation of a job cannot be
preempted. Every machine can execute only a single oper-
ation of a job at a time [12]. This problem can be given as
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follows:

C(1, 1) = T (1, 1) (1)

C(1, i) = C(1, i− 1) + T (1, i) (2)

C(r, 1) = C(r − 1, 1) + T (r, 1) (3)

C(r, i) = max(C(r, i− 1), C(r − 1, i)) + T (r, i) (4)

where T (r, i) denotes the execution time of the rth operation
of the ith job on machine Mr, and C(r, i) represents the
maximum completion time of the ith job on machine Mr, 1
≤ r ≤ m, and 1 ≤ i ≤ n.

The Job Shop Scheduling Problem (JSSP) is also one of
the existing combinatorial optimization problems and it has
been demonstrated to be an NP-hard problem [6]. The
JSSP consists of n jobs and m machines. Each job must
go through m machines to complete its work. We consider
one job consists of m operations. Each operation uses one of
m machines to complete one job’s work for a fixed time in-
terval. Once one operation is processed on a given machine,
it can not be interrupted before it finishes the job’s work.
The sequence of operations of one job should be predefined
and maybe different for any job. In general, one job being
processed on one machine is considered as one operation as
noted above, then every job has a sequence of m operations.
Each machine can process only one operation during the
time interval. The objective of JSSP is to find an appropri-
ate operation permutation for all jobs that can minimize the
makespan Cmax, i.e., the maximum completion time of the
final operation in the schedule of n × m operations.

Let J = 0, 1, ..., n, n+ 1 denote the set of operations to
be scheduled and M = 0, 1, ..., m,m+ 1 the set of machines.
The operations 0 and n + 1 are dummy, have no duration
and represent the initial and final operations. The opera-
tions are interrelated by two kinds of constraints. Firstly,
the precedence constraints, which force each operation j to
b scheduled after all predecessor operations, Pi, are com-
pleted. Secondly, operation j can only be scheduled if the
machine it requires is idle. Further, let dj denote the fixed
duration (processing time) of operation j.

Let Fj represent the finish time of operation j. A schedule
can be represented by a vector of finish times (F1, ...Fm, Fm+1).
Let A(t) be the set of operations being processed at time t,
and let rjm = 1 if operation j requires machine m to be
processed and rjm = 0 otherwise.

The conceptual model of the JSSP can be described in the
following way [8]:

MinimizeFn+1(Cmax) (5)

Fk ≤ Fj − dj , j = 1, ...n + 1, k ∈ Pj (6)

∑
j∈A(t)

rjm ≤ 1, m ∈ M, t ≥ 0 (7)

Fj ≥ 0, j = 1, ...n+ 1 (8)

The objective of Eq.5 minimizes the finish time of opera-
tion n+ 1 (the last operation), and therefore minimizes the
makespan. Constraints Eq.6 impose the precedence relation-
s between operations and constraints in Eq.7 state that one
machine can only process one operation at a time. Finally
Eq.8 forces the finish times to be nonnegative.

In the past few decades, these problems have attracted
many researchers. Many heuristic algorithms have been pro-
posed, such as Taillard’s tabu search method [20], Ogbu and
Smith’s simulated annealing algorithm [16], shifting bottle-
neck approach (SB) [1], tabu search algorithm(TS) [15], ge-
netic algorithm(GA) [8], simulated annealing(SA) [19], par-
ticle swarm optimization(PSO) [7], and ant colony(ACO)
[21]. Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Dr. Eberhart and Dr.
Kennedy in 1995, which is inspired by social behavior of bird
flocking. It is endowed with properties of easy implementa-
tion and fast convergence. In recent years, there have been
a lot of reported works focused on the modification of PSO
to solve continuous optimization problems [9].

Most studies indicate that a single technique can not solve
this stubborn problem. Much work has been done on hybrid
methods involving GA,SA,TS,and SB techniques as hybrid
methods can provide high-quality solution within reason-
able computing time. A comprehensive survey of scheduling
techniques can be seen from Blazevicz et al. and Jain and
Meeran. In this paper, we focus on exploiting particle swar-
m optimization algorithm to achieve the better solution for
FSSP and JSSP.

In this paper, We propose a new multi-structural hybrid
evolutionary framework, and derive HPTS algorithm to solve
FSSP and JSSP. The remainder of the paper is organized as
follows. In Section 2, we present and analyze the multi-
structural hybrid evolutionary framework. Section 3 gives
experimental results of the HPTS and other competitive ap-
proaches. Finally, the main conclusions are drawn.

2. PROBLEM FORMULATION

2.1 Particle Swarm Optimization
The particle swarm concept was based on the premise of

social behavior. The original intent was to graphically sim-
ulate the graceful but unpredictable choreography of a bird
flock. A PSO algorithm mimics the behavior of flying birds
and their means of information exchange to solve optimiza-
tion problems. It is a simulator of social behavior that is
used to realize the movement of a birds’ flock [4]. PSO
has been introduced as an optimization technique in real-
number spaces. But many optimization problems are set
in a space featuring discrete components. Typical examples
include problems that require ordering and route planning,
such as in scheduling and routing problems [17]. They are
described as follows [18]:

Vid = ω × Vid + C1 ×Rand()×
(
Pbest

id − Pid

)

+ C2 × Rand()×
(
Pbest

gid − Pid

)
(9)

Pid = Pid + Vid (10)

where Vid represents the velocity of particle i. It also can be
regarded as the distance to be traveled by particle i from its
current position. Pid represents the particle position, P best

id

called “pbest”, the local best solution, represents particle i’s
best previous position, and P best

gid called “gbest”, the global
best solution, represents the best position among all parti-
cles in the swarm. ω is an inertia weight. It regulates the
trade-off between the global exploration and local exploita-
tion abilities of the swarm. The acceleration constants C1
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and C2 represent the weights of the stochastic acceleration
terms that pull each particle toward “pbest” and “gbest” po-
sitions. Rand() is a random function with range [0, 1].

For Eq.9, the first part represents the inertia of previous
velocity; the second part is the“cognition”part, which repre-
sents individuals thinking independently; and the third part
is the “social” part, which represents cooperation among the
particles [11].

2.2 The Multi-Structural Hybrid Evolution-
ary Framework

In the framework, three different operations are defined:
PSO operation, TS operation and SA operation. PSO com-
bines local search (by self-experience) with global search (by
neighboring experience), achieving a high search efficiency.
TS uses a memory function to avoid being trapped at a
local minimum. This method can also be referred to as
calculation of the horizontal direction. SA employs certain
probability to avoid being trapped in a local optimum and
the search process can be controlled by the cooling sched-
ule (also known as calculation of vertical direction). The
groups use a random initialization, which generates initial
particle’s initial position and velocity in the search space.
Each particle’s best position is set to the current location.
The current position of the corresponding fitness value is
calculated for each particle, according to the evolutionary
structure. The multi-structural hybrid evolutionary frame-
work can be converted to the traditional PSO that provides
initial solution for TS and SA during the hybrid search pro-
cess. Such hybrid strategy retains the advantages of TS and
SA, which provides a promising methodology. In addition, it
can be applied to many combinatorial optimization problem-
s by simple modification. The description of the framework
is shown in algorithm 1 and algorithm 2. The process of
implementing the framework is as follows:

Step 1: Initialize a swarm of particles with random posi-
tion and velocities in the D-dimensional problem space.

Step 2: For each particle, evaluate the desired optimiza-
tion fitness function.

Step 3: Individual particle’s fitness value are with D-
dimensional problem space . If the current value is better
than it, then set the position equal to the current value,
and the position equal to the current position in the D-
dimensional problem space.

Step 4: Compare the fitness evaluation value with the
swarm’s best fitness value obtained so far. If current value
is better than , then reset to the current particle’s fitness
value.

Step 5: Change the velocity and position of the particle
according to Eq.9 and Eq.10, respectively.

Step 6: Loop to step (2) until a termination criterion is
met, usually a sufficiently good fitness or a specified number
of generations.

Algorithm 1 PSO

1: while the maximum of generation is not met do
2: Generation++;
3: Generate next swarm;
4: Find a new local optimum (gbest) and a global opti-

mum (pbest);
5: Update gbest and pbest;
6: end while

Algorithm 2 TS (SA)

1: Set iteration iter = iter + 1, generate neighbors of the
current solution s∗ by a neighborhood structure. If the
s∗ is optimal, then stop;

2: Select the best neighbor which is not tabu or satisfies
the aspiration criterion, and store it as the new current
solution s∗, update the tabu list;

3: for gbest particle s of swarm do
4: Tempreture Tk = T0;
5: while Tk ≥ Tend do
6: Generate a neiborhood solution s∗ from s by pair-

exchange method;
7: Compute the fitness of s∗;
8: Evaluate s∗, Δ = f(s*)-f(s);
9: if min[1,exp(-Δ/Tk)] < random[0,1] then
10: Accept s∗;
11: Update the best solution found so far if possible;
12: end if
13: end while
14: Tk= B * Tk−1 (weight value parameters are included

in B);
15: end for
16: If iter ≤ improveiter then go to loop;
17: If a termination criterion is satisfied then stop. Other-

wise ’pop’ a solution on top of the solution stack L, shift
the solution to active schedule and install the active so-
lution as the current solution s*, set iter = 0, and empty
tabu list. Go to step 2;

2.3 Implementation of Proposed Algorithms
Some issues are in applying PSO algorithm to solve schedul-

ing problems. The original PSO design is developed to
solve continuous function. The PSO algorithm is problem-
independent, which means little specific knowledge relevent
to a given problem is required. All we have to know is the fit-
ness evaluation of each solution. This advantage makes PSO
more robust than many other search algorithms. However,
since PSO is a stochastic search algorithm, it is prone to in-
adequate global search ability at the end of a run. PSO may
fail to find the required optimum in cases when the problem
to be solved is too complicated and complex. TS and SA can
employ certain probability to avoid becoming trapped in a
local optimum, and the search process can be controlled by
the cooling schedule. by designing the neighborhood struc-
ture and cooling schedule of TS and SA, we can control the
search process and avoid individuals being trapped in local
optimum more efficiently. Therefore, a hybrid algorithm of
PSO, TS and SA, named HPTS, is presented in Figure 1.

1) Encoding scheme and initial solution: Suppose that the
searching space is D-dimensional and m particles form the
swarm. The ith particle represents a D-dimensional vector
Xi (i = 1, 2,..., m). It means that the ith particle locates
at Xi = (xi1, xi2,..., xiD) ( i = 1, 2,..., m). The position
of each particle is a potential result. We could calculate the
particle‘s fitness by putting its position into a designated
objective function. The ith particle “flying” velocity is also
a D-dimensional vector, denoted as Vi = (vi1, vi2,..., viD) (
i = 1, 2,..., m). Denote the best position of the ith particle
as Pi = (pi1, pi2,..., piD), and the best position of the swarm
as Gi = (gi1, gi2,..., giD), respectively.

2) The neighborhood search: The neighborhood search
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Figure 1: The structure of HPTS.

strategy is directly effective on the efficiency of the local
search for the FSSP and JSSP, unnecessary and infeasible
moves must be eliminated if it is possible. Currently, the
most well-known neighborhood structures are all based on
the concept of blocks. In the HTPS algorithm, taking in-
to account a balance of the effectiveness and efficiency, we
ultimately adopt N61 neighborhood structure, which is in-
troduced by Balas and Vazacopoulos [2].

3) Tabu list: The main task is to avoid the search process
turning back to the solutions visited in the previous steps.
The elements stored in the tabu list are the attributes of
moves, rather than the attributes of solutions for the con-
sidered problem. The main purpose of using this attributive
representation is to reduce the computational cost. In H-
PTS, the size of the list is set the same as the swarm size.
During the algorithm running, the tabu list will be updated
dynamically.

4) Fitness function: Fitness function is usually used as the
performance evaluation of particles in the swarm, which is
represented to map an original objective function value to a
fitness function that represents relative superiority of parti-
cles. In HPTS, each particle’s fitness function is expressed
by the makespan of the corresponding schedule.

5) Cooling schedule: The SA process can be controlled
by the cooling schedule. In general, the cooling schedule is
specified by several parameters and/or methods, namely the
initial temperature T0, the rule designated how to lower the
temperature, and the termination condition. In proposed
algorithm, the initial temperature T0 is set by T0 = Δ fmax

, where Δ fmax is the maximal difference in fitness values
between any two neighboring solutions. We specify the tem-
perature with Tk = B × Tk−1 during the kth epoch (k =
1,2,3,...), where B is a parameter called decreasing rate and
has a value less than 1.

6) Termination criterion: If one of the following conditions
is satisfied: whether the algorithm stops when the algorithm
has performed a given total number of iterations, or the elite
solution stack has been exhausted, or the solution is proved
to be optimal.

3. EXPERIMENTAL RESULTS

3.1 Experimental results 1
To illustrate the effectiveness of the HPTS algorithm for

FSSP to minimize the makespan, 30 instances of 10 different
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Figure 2: The comparison of three algorithms.

Figure 3: The detailed comparison of experimental
results

sizes taken from Taillard’s benchmark (Taillard, 1990) have
been selected for simulation experiments. This benchmark
contains some instances that have been proven to be very
difficult to solve in the sense that the best solutions found
so far are through the use of a very lengthy Tabu-search
heuristic.

In HPTS, the population size is 100, which means we
use only 100 particles to search solutions for every problem
where the number of iterations is 400. In order to compare
the convergence rate with GA and NPSO [22], we run the
HPTS algorithm 10 times for every problem. The proposed
two algorithms were implemented in MATLAB and simu-
lated in a platform with 2.27 GHz Intel(R) Core(TM)2 Duo
CPU, RAM 4GB.

The simulated experimental results are illustrated in Ta-
ble 1, Figure 2 and Figure 3. In Table 1, PS denotes the
problem’s size: the number of jobs (Js) multiplied by the
number of machines (Ms), FSSP represents the Flow-shop
Scheduling Problem, WK represents the well-known opti-
mal solutions in the benchmark, Min means the best solu-
tion found by HPTS, Max means the worst solution found
by HPTS, Avg indicates the average value of total run so-
lutions. In Figure 2, these parameters satisfy the following
conditions: DIF −HPTS = HPTS - WK; DIF −NPSO
= NPSO - WK; DIF −GA = GA - WK; BASELINE =
WK - WK; Original represents the some results are equal
to WK. New indicates the best solutions are better than
WK. and Bad means the bad results are worse than WK.
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Figure 4: The gantt chart of optimal schedule for
LA10.

The detailed comparison of experimental results is shown in
Figure 3.

Table 1 shows the experimental results of different bench-
mark instances. The comparison of the three different algo-
rithms is shown in Figure 2. According to the values of Min,
Max and Avg, and also the curve about GA, NPSO , and
HPTS, we have an observation that the HPTS outperforms
the NPSO and GA algorithms in the total solution quality
thoroughly.

Figure 2 shows the comparison of HPTS with GA and
NPSO. It can be observed obviously that our HPTS algo-
rithm outperforms the NPSO and GA algorithms in some so-
lution quality thoroughly (In particular, ta005, ta010, ta015,
ta020, ta025, ta030 and ta031). HPTS can achieve the op-
timal value in the search space quickly with smaller popula-
tion size, making use of its better local searching ability to
get the final optimal solution at the end of evolution.

More important is Figure 3, in which HPTS can find the
WK in 20 cases (67 %) among the 30 instances, the better
(New) results are found in 7 instances (ta005, ta010, ta015,
ta020, ta025, ta030 and ta031). It is within 23 % of the per-
cent average objective value over than WK, which demon-
strates HPTS algorithm has the powerful explore-ability. 44
% of the percent average objective value equal to WK.

Therefore, the computational results show that the pro-
posed algorithm could obtain the high-quality solutions with-
in relatively short computation time. So, it is a robust, fast
and simply hybrid optimization algorithm.

3.2 Experimental results 2
To illustrate the effectiveness of the HPTS algorithm for

JSSP to minimize the makespan, 43 instances taken from
OR-Library [3] as test benchmarks to test our new proposed
algorithm. In the 43 instances, FT06, FT10, and FT20 were
designed by Fisher and Thompson [5]. Instances LA01-LA40
that were designed by Lawerence [13].

The proposed approach was coded in MATLAB program-
ming language and run on a 2.27 GHz Intel(R) Core(TM)2
Duo CPU, RAM 4GB personal computer. Each instance is
executed for 10 runs. The algorithm ran with the following
settings of the control parameters: K = 300 (iterations),
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Figure 5: The representative convergence curve for
LA10.

N = 400 (the number of particles), wmax = 0.4, wmin =
0.2 (inertia weight), c1 = c1= 0.2 (acceleration coefficient),
wmin =0.2 (inertia weight), T0 =10 (initial temperature).
The proper values of these parameters were experimental-
ly determined in a pre-processing phase. Specifically, the
performance of the proposed HPTS was compared against
that of Goncalves’HGA [8], Tsung-Lieh Lin’s MPSO [14],
Wei-Jun Xia’s HPSO [10].

Due to the stochastic behavior of these algorithms, and
the fact that none of them has a natural termination point,
it was decided to run the algorithms for the same fix time
duration and report the best solution obtained after this
time has elapsed. The benchmarks range from small size
instances with 6 jobs and 6 machines to large size instances
with 30 jobs and 10 machines. Specifically, The LA10 prob-
lem is described as an example to illustrate the simulated
experiment results more intuitively, in which there are nu-
merous local optimum so that the problem is challenging
enough. Figure 4 shows the gantt chart of optimal schedule
for LA10 and Figure 5 describes the representative conver-
gence curve for LA10.

In Tabel 2, Problem denotes the JSSP problems, Size rep-
resents the Problem size n jobs on m machines. BKS rep-
resents the well-known optimal solutions in the benchmark.
Among 43 instances, HPTS can find the well-known optimal
solutions with 40 instances that is much better than HGA
(33), MPSO (36), and HPSO (35). Moreover, in about 93
% of the instances, and the deviation of the minimum found
makespan from the well-known optimal solutions is only on
average 0.4 %. The proposed algorithm yields a significant
improvement in solution quality with respect to almost all
the other algorithms, except for the HGA, MPSO and HP-
SO approaches that has a better performance in the LA29,
LA36, LA37, LA38, LA40 instances mainly. For instances
LA24, LA25, LA27, LA28, LA29, LA36, LA37, LA38, LA39,
LA40, the deviation between the best minimum founded so-
lution and the best known solution are all less than the de-
viation results of HGA. HPTS can obtain better solution
for instances LA24, LA27, LA29, LA36, LA37, LA38, LA40
than MPSO. Except for LA29, HPTS also can obtain bet-
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ter solution (LA24, LA36, LA37, LA38, LA39, LA46) than
HPSO.

Obviously, the experimental results show that HPTS is
more efficient than other existing discrete particle swarm
optimization and genetic algorithms, respectively. The su-
perior results also indicate the successful incorporation of
the improved PSO, TS and SA, which facilitates the escape
from local minimum points and increases the possibility of
finding a better solution. Therefore, the computational re-
sults show that the proposed algorithm could obtain the
high-quality solutions within relatively short computation
time. So, it is a robust, fast and simply hybrid optimization
algorithm.

4. CONCLUSIONS
There is no argument with that the most important fea-

ture of FSSP and JSSP are its efficiency. Therefore, the
majority of the research work done in the intelligent man-
ufacturing community is about achieving global optimum.
We are motivated to find high-quality solutions in a reason-
able computation time by exploiting Particle Swarm Opti-
mization (PSO), Tabu Search (TS) and Simulated Annealing
(SA). We propose a new multi-structural hybrid evolution-
ary framework, and derive HPTS algorithms as its exten-
sion. Extensive experiments on different scale benchmarks
validate the effectiveness of our approaches, compared with
other well-established methods. The experimental results
show that new upper bounds of the unsolved problems are
achieved in a relatively reasonable time. For example, in
30 Tailland’s and 43 OR-Library benchmarks, 7 new upper
bounds and 6 new upper bounds are obtained by the HPTS
algorithm, respectively.

For the future work, there are still many problems that
are not well solved with the HPTS algorithm. For instance,
currently the decision strategy of hybrid algorithm design is
still an art instead of a science. It is very hard to explain
why a certain decision strategy works better than other ap-
proaches. It is still not well understood why some heuristic
algorithms work with some classes of instances but not oth-
ers. There are other potentially useful features in the HPTS
algorithms. We plan to apply parallel and distributed com-
puting to solve other NP problems.
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Table 1: The experimental results 1
PS(Js*Ms) FSSP WK NPSO GA HPTS

Min Avg Max Min Avg Max Min Avg Max
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Table 2: The experimental results 2
Problem Size BKS HGA MPSO HPSO HPTS
FT06 6 × 6 55 55 55 55 55
FT10 10 × 10 930 930 930 930 930
FT20 20 × 5 1165 1165 1165 1178 1165
LA01 10 × 5 666 666 666 666 666
LA02 10 × 5 655 655 655 655 655
LA03 10 × 5 597 597 597 597 597
LA04 10 × 5 590 590 590 590 590
LA05 10 × 5 593 593 593 593 593
LA06 15 × 5 926 926 926 926 926
LA07 15 × 5 890 890 890 890 890
LA08 15 × 5 863 863 863 863 863
LA09 15 × 5 951 951 951 951 951
LA10 15 × 5 958 958 958 958 958
LA11 20 × 5 1222 1222 1222 1222 1222
LA12 20 × 5 1039 1039 1039 1039 1039
LA13 20 × 5 1150 1150 1150 1150 1150
LA14 20 × 5 1292 1292 1292 1292 1292
LA15 20 × 5 1207 1207 1207 1207 1207
LA16 10 × 10 945 945 945 945 945
LA17 10 × 10 784 784 784 784 784
LA18 10 × 10 848 848 848 848 848
LA19 10 × 10 842 842 842 842 842
LA20 10 × 10 902 902 902 907 902
LA21 15 × 10 1046 1046 1046 1046 1046
LA22 15 × 10 927 927 927 927 927
LA23 15 × 10 1032 1032 1032 1032 1032
LA24 15 × 10 935 953 941 938 935
LA25 15 × 10 977 986 977 977 977
LA26 20 × 10 1218 1218 1218 1218 1218
LA27 20 × 5 1235 1256 1239 1236 1236
LA28 20 × 5 1216 1232 1216 1216 1216
LA29 20 × 5 1152 1196 1173 1164 1166
LA30 20 × 5 1355 1355 1355 1355 1355
LA31 30 × 10 1784 1784 1784 1784 1784
LA32 30 × 10 1850 1850 1850 1850 1850
LA33 30 × 10 1719 1719 1719 1719 1719
LA34 30 × 10 1721 1721 1721 1721 1721
LA35 30 × 10 1888 1888 1888 1888 1888
LA36 15 × 15 1268 1279 1278 1269 1268
LA37 15 × 15 1397 1408 1411 1401 1399
LA38 15 × 15 1196 1219 1208 1208 1201
LA39 15 × 15 1233 1246 1233 1240 1233
LA40 15 × 15 1222 1241 1225 1226 1222
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