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ABSTRACT 
The detection of gene-gene and gene-environment interactions in 
genetic association studies presents a difficult computational and 
statistical challenge, especially as advances in genotyping 
technology have rapidly expanded the number of potential genetic 
predictors in such studies. The scale of these studies makes 
exhaustive search approaches infeasible, inspiring the application 
of evolutionary computation algorithms to perform variable 
selection and build classification models.  Recently, an application 
of grammatical evolution to evolve decision trees (GEDT) has 
been introduced for detecting interaction models.  Initial results 
were promising, but relied on arbitrary parameter choices for the 
evolutionary process.  In the current study, we present the results 
of a parameter sweep evaluating the power of GEDT and show 
that improved parameter choices improves the performance of the 
method.  The results of these experiments are important for the 
continued optimization, evaluation, and comparison of this and 
related methods, and for proper application in real data. 
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1. INTRODUCTION 
Grammatical evolution decision trees (GEDT) was previously 
introduced as a new method to detect gene-gene and gene-
environment interactions in genetic association studies (where the 
goal is to detect variants that predict common disease).  GEDT 
uses grammatical evolution to evolve decision trees that classify 
disease status, and has been used on a limited range of simulations 
[1]. While initial results are promising, the initial parameter 
settings for the GE application have been arbitrary. We 
hypothesize that optimization of the GEDT approach through 
parameter sweeps of the evolutionary operators implemented will 
result in improved performance of the method.  In the current 
study, we use simulated genetic data to evaluate the impact of 
different parameter settings for GEDT. The results of these 
sweeps will be crucial for the improved application of GEDT for 
continued methods development and application in real data.  

2. METHODS 

2.1 Grammatical Evolution Decision Trees 
(GEDT) 
The implementation of GE to evolve DTs has been previously 
described [2]. GE is used to perform variable selection in high-
throughput data (Here, the input variables are single nucleotide 
polymorphisms, or SNPs) and optimize DTs that best classify 
the disease outcome.  This is performed in a cross-validation 
framework, where classification error is the fitness function, 
and cross-validation consistency is used for final model 
selection. 

2.2 Data Simulation 
Penetrance functions are used to represent epistatic genetic 
models for simulation, where penetrance defines the 
probability of disease given a particular genotype combination 
by modeling the relationship between genetic variations 
(SNPs) and disease risk. For each individual subject within a 
dataset, a total of 100 SNPs were simulated, where two of the 
SNPs are associated with the outcome, and 98 are nuisance 
(noise) SNPs. Case-control data was simulated such that each 
dataset included 250 cases and 250 controls, and 100 datasets 
were generated for each model. We used a well-described 
epistatic model exhibiting interaction effects in the absence of 
main effects for the current study. This model, based on the 
nonlinear XOR function, was initially described by Li and 
Reich and genotypes were generated according to Hardy-
Weinberg proportions  [3]. In both models, p (the major allele 
frequency) = q (the minor allele frequency) = 0.5. GenomeSim 
software described by Dudek et al [4] was used to simulate the 
data. Additionally, to assess the false positive rate, 100 
replicates of null data were simulated with no disease model.  
The same number of SNPs and individuals was generated, but 
case-control status was randomly assigned.   

2.3 Data Analysis and Parameter Sweeps 
GEDT was used to analyze each of the 200 simulated datasets 
described above. Each dataset was evaluated across a set of 
parameter sweeps.  Table 1 lists the parameters considered in 
the current study and the values used in the sweep.  There 
were 5 parameters considered, with the full combinatorics of 
all parameter values also implemented, resulting in a total of 
72 parameter combinations used for analysis. 
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Table 1. Parameter Values Used in the Parameter Sweep 

Parameter Possible Values 
Population Size 250, 500, 750 
Number of Generations 250, 400, 550 
Crossover Rate 0.8, 0.9 
Mutation Rate 0.01, 0.05 
Selection method  Tournament; Roulette 

 
GEDT is implemented in C++ and Perl, and run on quad-core 
Core2 Xeon processors (8 processors, each at 3 GHz and with 
4GB of memory).  Software and user instructions are available 
from the following website: www4.stat.ncsu.edu/~motsinger. 

Power for all analyses was estimated under each epistatic model 
as the number of times the algorithm correctly identified the 
functional (disease causing) loci as the top 2 loci based on the 
cross-validation criteria discussed above out of each set of 100 
datasets, without any false positive loci.  

3. RESULTS 
The power of GEDT to detect the functional loci is visualized for 
each individual parameter across the sweeps as box and whisker 
plots in Figure 1. In each boxplot, the whiskers are defined as 
points at 1.25 times the interquartile range.  These results show 
general trends that increased parameter values lead to higher 
performance.  To test for significant differences in the parameter 
changes in power, multiple linear regression analysis was 
performed, testing the impact of each parameter setting across all 
results.  The results indicate significant differences in all but one 
of the parameter settings. Mutation rate (p<0.0001), selection 
method type (p<0.0001), population size (p<0.0001), and 
generation number (p<0.0005) all make a significant difference in 
the power.  There was not a significant difference in results based 
on the crossover rate (p=0.5699).   

The false positive rate of the method (found by determining the 
power to detect the model in the null data) was nearly always 
zero, which indicates a very low false positive rate (results not 
shown). These results show that differences in the power results 
are not due to inflation of the false positive rate, or bias towards 
the specified model.  

4. DISCUSSION 
The results of the current study show the relative performance of 
GEDT to detect a purely interactive genetic model under a range 
of different parameter settings.    A small increase in mutation rate 
makes a very big difference in power. Crossover rate was the only 
parameter which did not have a significant p-value, but there may 
be a ceiling effect in the current study.  Population size is shown 
to be very significant, with what appears to be a linear increase 
over populations. There is also a very significant difference in 
selection methods - tournament greatly outperformed roulette.  
The number of generations parameter also shows a strong 
increasing trend with power, even though it was the least 
significant of the significant parameters. From the parameters 
swept, future studies with data of similar characteristics should 
consider the following parameter configuration for optimal power 
and minimal computational cost: population of 750, crossover of 
0.8, mutation of 0.5, tournament selection, generation size of 550.  

 

Figure 1. Power Results for Each Parameter Swept. The box 
and whisker plots represent the distribution of power results 

across all other parameter values. 

These results show parameter settings for the current model and 
data structure, but should be extended for a wider range of data 
structures, particularly for larger datasets. Understanding how 
optimal parameter choices covary with different aspects of the 
data such as number of individuals, etc. will be important to 
understand as GEDT is applied to larger datasets. 
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