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ABSTRACT 
Learning Classifier Systems (LCSs) are rule-based systems with a 
discovery mechanism to find additional meaningful rules 
according to the results of its previous experiments. LCSs were 
designed to deal with both single and multistep problems. In the 
first category, almost all major studies focus on the single-label 
classification problems. However, there are more complex 
problems that require multi-label classification. The aim of this 
study is to take advantage of the power and ability of LCSs for 
solving multi-label classification problems. The main idea behind 
this research is to guide the discovery mechanism by a prior 
knowledge. This prior knowledge is defined as a voting 
mechanism that realizes the quality of the existing rules and is 
used in discovering new rules. Our proposed system is called 
Voting Based LCS (VLCS). The experimental results show the 
proposed method has potential for future research and progress. 
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1. INTRODUCTION 
Classification is one of the most important problems under 
investigation in machine learning. Based on the number of classes 
that each input instance might have, classification problems can 
be divided into two main categories: (i) single-label and (ii) multi-
label problems. In single-label problems, only one class is 
associated to each instance. Most previous studies are mainly 
related to this category of problems. However, in many domains, 
each instance can belong to more than one class for example, in 

the text categorization and bioinformatics field [3] and as it is 
obvious, classification in this kind of environments is more 
complex than classification in single-label data. 

Learning Classifier Systems (LCSs), first proposed by Holland in 
1971 [8], are systems that use a knowledge base of rules and 
include a discovery mechanism. The discovery mechanism uses 
an evolutionary algorithm [2] to produce more promising rules.  
Many different extended version of LCS have been proposed in 
the literature [11] which could be divided into two main 
categories based on the evolutionary algorithm approach which is 
used: (i) Michigan and (ii) Pittsburgh. In the Michigan family, 
each individual in the population is one classifier, however, in the 
Pittsburgh family; each individual in the population is a set of 
classifiers.  

Although a lot has been done in terms of classifications using 
LCSs, most of these studies have been conducted for single-label 
classification problems and multi-label classification is in its 
inception [17] [18]. The aim of this study is to propose a new 
efficient LCS-based approach for multi-label classification that 
has comparable results to other multi-label classification 
approaches. 

The remaining of this paper is organized as follows: Section 2 of 
this paper gives an overview of multi-label classification. Section 
3 presents the usual structure and components of the LCSs. In 
section 4 and 5, we describe the main idea behind Voting Based 
LCS and the experimental results are presented in section 6. 

2. MULTI-LABEL CLASSIFICATION 
The need for multi-label classification methods is increasing 
rapidly in modern applications [13] [19] [20]. In many 
classification problems, each instance is associated with a single 
class label. On the other hand, in some domains e.g., text 
categorization and bioinformatics, instances are associated with 
more than one class which are called multi-label classification 
problems. In a more formal manner, it could be said that in single-
label classification problems, each instance is associated with a 

single label l  of a set of labels L , 1L  . In a multi-label 

classification problem instances are associated with a set of labels 
Y L [14]. 

The approaches to tackle multi-label classification problems are 
categorized into two major families: (i) label ranking (LR) and (ii) 
multi-label classification (MLC) [15]. The output of LR is 
expected to be a rank of available classes for each input instance. 
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In MLC, the aim is to define relevant classes for the input 
instance. Both of these tasks are important in mining multi-label 
data. For example in text categorization, a typical task is to rank 
the available topics for related documents based on their textual 
content and another task is to define the classes that the document 
belongs to. There are some methods that do both tasks 
simultaneously. These methods are called multi-label ranking 
(MLR) [1]. 

There are several techniques to deal with these tasks. As 
previously proposed [15], we can group these methods into two 
categories: (i) problem transformation, and (ii) algorithm 
adaptation. In the first category, problem transformation, we 
transform the multi-label data into similar single-label data. A 
large number of learning tasks is available for processing single-
label data. The drawback of these methods is that they do not 
consider the correlation between the classes. The second category, 
algorithm adaptation, is the familiar single-label learning tasks 
which are adapted to deal with multi-label data [5] [7] [20]. A 
special type of problem transformation, called label-based 
transformation [3], is also available. In this transformation, we 
have N binary classifiers each associated with one of the classes, 
where N is the number of class labels. 

3. LEARNING CLASSIFIER SYSTEMS 
Learning Classifier Systems (LCS) has been proposed to be able 
to deal with a wide variety of machine learning problems.  LCSs 
are rule-based systems composed of rules generally in the form 
of: 

IF antecedent THEN consequent 

The other required parts for a LCS are an inference engine, 
conflict-resolution and credit-allocation system, and a discovery 
mechanism [12]. The inference engine is responsible for diagnosis 
of the matched rules for the current input. In many LCSs, the 
representation of the antecedent part of the rules is from the 
ternary alphabet {0, 1, #}. Where 1 matches with 1, 0 matches 
with 0 and # (don’t care) match with both 0 and 1. The # acts as a 
wildcard [2] that allows us to have generalization. For example 
the rule condition 0#1 matches both input 001 and 011. We can 
also consider different representations for the consequent part but 
usually a binary representation for this part of rules is considered. 
Therefore, in LCSs we are faced with a population of individuals, 
called rules, where each of them covers a part of the problem 
domain to control it. Because of the existence of the “don’t care” 
sign in the alphabet, there might be several rules that match with 
each input instance. In such cases to determine which of the 
matched rules should act in the system, a conflict-resolution (CR) 
system is necessary. Additionally, a credit-allocation (CA) system 
is used to determine one or more measures of utility for each rule 
based on previous experiences [12]. 

The system's accuracy can be improved by manipulating the rules 
based on previous experiments. The discovery component is 
responsible for discovering better rules and improving existing 
ones through an evolutionary algorithm. Evolutionary algorithms 
are search algorithms based on natural selection theory and 
genetics principles [2]. To guide the evolution, we need a measure 
for the classifiers, called fitness [9], which estimates the quality of 
the information the classifier carries about the problem. The better 
the measure, the more reliability it has in the evolutionary 

algorithm. An evolutionary algorithm selects parents form the 
population of individuals and produces a new offspring using 
evolutionary operators. Different selection mechanisms and 
operators are available [6]. One of these operators is the mutation 
operator. Mutation operators randomly change small parts of the 
rule to reach a neighborhood of the rule that we expect to be a 
more promising rule. In this operator the fitness measure is used 
to define the mutation rate. The mutation rate is the probability 
that the mutation operator acts on each part of the rule. 

4. VOTING BASED LCS 
Here we propose a new LCS which we call Voting Based LCS 
(VLCS) as a method for guiding the discovery mechanism. The 
main idea behind VLCS is to use a voting mechanism to realize 
the quality of the rules. These votes are given by the input 
instances to their matched rules and are used as a fitness measure 
in the discovery mechanism. The discovery mechanism uses this 
prior knowledge to have more meaningful operations. In this way, 
we expect more robust rules form the rule discovery operations. 

The given votes should have the ability to describe the quality of 
the rules accurately. In other words, we require promising votes 
that can be used instead of the fitness measure. For this reason, 
we define different types for the rules such that each of these 
types describes the quality status the rule might have. For 
example, in a single-label classification problem, rule types might 
be correct or wrong. These types defined for the rules are 
employed as voting options. In the example above, each rule 
might receive a “correct” or “wrong” vote from each matched 
input instance. Thus, a rule receives a combination of “correct” 
and “wrong” votes from its matched input instances. This 
combination of votes acts as the prior knowledge that is gained 
from the voting mechanism of past experiences to guide the 
discovery mechanisms to have more control on the operators. In 
the next section, we introduce the idea with more detail for a 
multi-label classification problem. 

5. VOTING BASED LCS FOR MULTI-
LABEL CLASSIFICATION PROBLEM 
As described above, in VLCS, to have a meaningful voting 
mechanism, we should determine available voting options each 
input instance can assign to each matched rule. We denote these 
voting options as different types a rule might have. In a multi-
label classification problem, we define five types for the 
classifiers. They might be correct, wrong, subset, superset or 
partial-set. We describe these types as below: 

 A rule is correct from a matched input instance’s 
perspective if the rule predicts all expected classes of the 
data correctly. 

 A rule is wrong from a matched input instance’s perspective 
if the rule predicts none of the expected classes of the data 
correctly. 

 A rule is subset from a matched input instance’s perspective 
if the rule predicts some expected classes of the rule 
correctly but fails to identify other expected classes. 

 A rule is superset from a matched input instance’s 
perspective if the rule predicts all of the expected classes 
correctly and wrongly assign some other non-expected 
classes.  
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 A rule is partial-set from a matched input instance’s 
perspective if the rule predicts some of the expected classes 
correctly, but fails to identify all expected classes and also 
wrongly assigns some other non-expected classes. 

For example in a multi-label classification problem, as mentioned, 
we have rules in the form below where “/” delimit consequent 
part. 

Antecedent / Consequent  

###1 / 110 

0011 / 001 

The antecedent part of the rule matches with the feature vector of 
the input instances. The consequent part of the rule is the output, 
which are the classes predicted by the rule for each matched input 
instance. In this representation, we consider one bit for each class 
in the consequent part, where the value 1 in the bit indicates 
existence of the respective class. For example, the consequent 011 
means the first class is not relevant to the input, but the second 
and third classes are assigned to the input instance. If a rule 
predicts classes of an input instance as expected the rule receives 
the vote “correct”. The rule receives the vote “wrong” if it 
predicts none of the expected classes correctly, receives the vote 
“subset” if it predicts some expected classes correctly, receives 
the vote “superset” if predicts all the expected classes and some 
additional non-expected classes, and receives the vote “partial-
set” if predicts some of the expected classes and some additional 
non-expected classes as described above. Table 1 presents an 
example of a rule that might get different votes from matched 
input instances. 

Table 1: Example of how votes are given to a rule from input 
instances 

Input 
Instance 

Expected 
output 

Selected 
Rule 

Rule Type 

0001 1, 2 ###1 / 110 Correct 

0101 1, 2, 3 ###1 / 110 Subset 

0111 1 ###1 / 110 Superset 

1111 1,3 ###1 / 110 Partial-set 

0011 3 ###1 / 110 Wrong 

 

The next step is to use this stored information about the rules as 
prior knowledge in the discovery mechanism. Consider a rule that 
all matched input instances vote it as a superset rule. With this 
information, we can infer that this rule is covering an appropriate 
area of the problem but it predicts greater number of classes for 
the matched input instance. With this knowledge we understand 
that the number of the classes the rule predicts should be 
subtracted. 

In the discovery mechanism an evolutionary algorithm with four 
mutation operators is defined. Two of them act in the antecedent 
part of the rule, and the other two act in the consequent part. One 
of the operators that acts in the antecedent part, named MA-G, 
works to generalize the rule by flipping the 0 or 1 bits to # and 
another, named MA-S, specializes the rule by flipping # bits to 1 
or 0. The other two operators that act in the consequent part are 
MC-S that subtract the number of predicted classes by flipping 1 

bits to 0; and another, named MC-A, adds more classes to 
predicted classes by flipping 0 bits to 1. 

The votes each rule has received guide which mutation operator 
should act. For example, if the rule has received votes as being a 
superset, the discovery mechanism is guided to use the MC-S 
operator to subtract some classes. Table 2 presents some of the 
guidance the discovery mechanism gets by the given votes. Note 
that in cases in which more than one mutation operator is 
activated, all of the operators act simultaneously to produce a new 
offspring. The probability of activation of each of them could 
depend on the combination of votes the rule has received. 

Table 2: Mutation operators chosen to act based on rule votes 

Rule Received Votes 
Activated Mutation 

Operator 

Correct MA-G 

Subset MC-A 

Superset MC-S 

Partial-Set MC-A, MC-S 

Wrong MC-A, MC-S 

Correct, Subset MA-S 

Correct, Superset MA-G 

Correct, Partial-Set MA-S 

Correct, Wrong MA-S 

Wrong, Subset MA-S, MC-A 

Wrong, Partial MA-S 

Correct, Subset, 
Wrong 

MA-S, MA-G 

 

The mutation operator performs bit flipping using a probability, 
which is the mutation rate. To define the mutation rate, we use the 
strength of the rule. The strength of a rule is the amount of reward 
we predict the system to receive if the rule acts [9]. Here, we 
define the strength of a rule as the mean of the rewards the rule 
gets over time. The mutation rate has reverse association with the 
strength of a rule: the more the strength, the less the mutation rate. 

To calculate the reward of one rule, we use an alteration of the 
reward estimate mechanism which is previously proposed for 
multi-label classification rules [18]. We define the reward 
estimate measure as below: 

1
rule expected

rule expected

C C
R

C C


 


 Equation (1) 

Where ruleC  is the set of classes predicted by the rule and expectedC  

is the set of expected classes the input instance has and  is the 
symmetric difference operator. The symmetric difference of two 
sets is the number of elements which are in either of the sets and 
not in both of them. The symmetric difference between two sets A 
and B can be expressed with the XOR operation as below: 

    :A B x x A x B      Equation (2) 
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Using this metric, the subset rule receives a reward that is not as 
much as the reward that the correct rule receives because of the 
expected classes it fails to predict. In the same way, the superset 
rule receives a reward that is not as much as the reward that the 
correct or subset rules receive because of the non-expected classes 
that is wrongly predicted by the rule, and the partial-set rule 
receives a reward based on the number of expected classes 
correctly predicted by the rule and the number of non-expected 
classes wrongly predicted by the rule. Table 3 presents an 
example of how the reward estimate measure works. This is what 
the credit-allocation task is responsible to do. This measure is also 
used by the conflict-resolution system to determine which of the 
matched rules should act. 

Table 3: Example of how the credit-allocation system rewards 
the rules 

Input Instance 
Expected 

output 
Selected Rule Reward 

0001 1, 2 ###1 / 110 1 

0101 1, 2, 3 ###1 / 110 0.66 

0111 1 ###1 / 110 0.50 

1111 1,3 ###1 / 110 0.33 

0011 3 ###1 / 110 0 

 

6. THE EXPERIMENTAL RESULTS 
In this section, we present an experiment on the described VLCS 
for multi-label classification on a binary dataset in the 
bioinformatics domain. The creators of this dataset [4] have 
originated it from the Uniprot dataset [16] which is one of the 
largest protein datasets. In the dataset used in this experiment, 
each instance represents a protein, and the absence or presence of 
each of the 152 PROSITE patterns [10] is shown as a binary 
attribute. This dataset has 135 instances in which each instance 
could have one or both of the available class labels, Anti-
oncogene and Apoptosis. For the VLCS, we use a 5-fold cross 
validation in which the training part is used to evaluate the rules 
using the voting mechanism described above. The credit-
allocation system is also used to assign the related reward to each 
rule. We use a fixed size population which has 500 members 
which initially are the most general possible rules. In each 
generation, each rule is voted by its matched instances, and for 
each matched instance a reward is assigned to the rule by the 
credit-allocation system; afterwards the discovery mechanism 
system uses the defined mutation operators to discover new rules 
using the generated knowledge as explained. The new generated 
rules would also be similarly evaluated. The combination of the 
best rules among the parents and the off-springs make the next 
generation. We stop the training phase if the mean strength of the 
rules decreases in 5 consecutive generations. It should be noted 
that the probability of flipping the # bits to 1 or 0 in the MA-S 
operator comes from the proportion of 0 and 1 in the dataset in 
this experiment.  

The results on the test part of the data are then compared with 
another multi-label classification method, ML-KNN [20]. In ML-
KNN, we set the number of neighbors to 3. Table 4 presents the 
mean and the standard deviation of 5 experiments for both 
methods with the same cross validation sets. 

Table 4: Comparison of predictive accuracy (%) in the test set 
for both algorithms on 5 experiments 

Method Accuracy 

ML-KNN 0.912 ± 2.4 

VLCS 0.895 ± 3.2 

 

7. CONCLUSION AND FUTURE WORK 
Because of the ability of LCSs in adaptation, LCSs are widely 
applied to different machine learning problems. Classification is 
one these areas in which the results of using LCSs have been 
promising. The main focus of this study was to employ the power 
of LCSs in multi-label classification problems that are more 
complex classification problems. To achieve this goal a new 
discovery mechanism for LCSs is presented that uses the prior 
knowledge gained from past experiences in the discovery 
mechanism to guide the evolutionary operators. The discovery 
mechanism defined in this paper uses a voting mechanism 
according to how correct the rule is to refine the rules. We call the 
LCS that works with this discovery mechanism Voting Based 
LCS. 

The primary conclusion of this study is that guiding the discovery 
mechanism with a prior knowledge, such that is used in VLCS, 
can help us solve applicable problems. In the multi-label 
classification problem that was investigated in this paper on one 
binary dataset, the result of the VLCS method was comparable to 
the ML-KNN method which shows the potential of this method. 

Future works involves a representation for dealing with numeric 
and nominal datasets and thus expand the application of this 
method on more complex datasets. Future studies on scalability 
and stability of the system is necessary. Additional studies on 
system performance in dealing with imbalanced data and noise is 
also required. There is also potential for improving evolutionary 
operators, guiding mechanism and rule refinement of this method. 
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