
PCA for Improving the Performance of XCSR in
Classification of High-dimensional Problems

Mohammad Behdad
University of Western Australia

35 Stirling Highway Crawley
6009 WA, Australia

behdad@csse.uwa.edu.au

Tim French
University of Western Australia

35 Stirling Highway Crawley
6009 WA, Australia

tim@csse.uwa.edu.au

Luigi Barone
University of Western Australia

35 Stirling Highway Crawley
6009 WA, Australia

luigi@csse.uwa.edu.au

Mohammed Bennamoun
University of Western Australia

35 Stirling Highway Crawley
6009 WA, Australia

bennamou@csse.uwa.edu.au

ABSTRACT
XCSR is an accuracy-based learning classifier system (LCS)
which can handle classification problems with real-value fea-
tures. However, as the number of features increases, a high
classification accuracy comes at the cost of more resources:
larger population sizes and longer computational running
times. In this research, we present a PCA-enhanced LCS,
which uses principal component analysis (PCA) as a pre-
processing step for XCSR, and examine how it performs
on complex multi-dimensional real-world data. The experi-
ments show that this technique, in addition to significantly
reducing the computational resources and time requirements
of XCSR, maintains its high accuracy and even occasionally
improves it. In addition to that, it reduces the required
population size needed by XCSR.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing

General Terms
Experimentation, Performance

Keywords
Genetics-Based Machine Learning, Learning Classifier Sys-
tems, XCSR, Network Intrusion Detection, Principal Com-
ponent Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

1. INTRODUCTION
First proposed by John Holland [7] in 1976, a learning

classifier system (LCS) is a machine learning technique that
combines reinforcement learning, evolutionary computing,
and other heuristics to produce an adaptive system capable
of learning in dynamic environments. It uses a population
of condition-action-prediction rules called classifiers to en-
code appropriate actions for different input states. Learn-
ing classifier systems (LCSs) are good at solving complex
adaptive problems and have been successfully used in data
mining applications [3]. However, when they are used for
high-dimensional problems, they slow down significantly [9].
XCS [21] is an accuracy-based LCS in which it is not the
classifiers which produce the greatest rewards that have the
best chance of propagating their genes into subsequent gen-
erations, but rather the classifiers which predict the reward
more accurately, independent of the magnitude of the re-
ward.

KDD’99 [6] is a popular network intrusion data-set. Each
element of this set describes a network connection using 41
features describing properties about a connection (such as
how many bytes are transferred, number of files access, or
the number of times a login was attempted). Many of these
connections are legitimate, but a number are malicious (such
as trying to gain root access to a system). The classifier must
try to determine whether a connection is benign, or whether
it corresponds to one of several different attack types. This
data-set has some interesting characteristics: it is large in
both the number of instances and number of dimensions,
and its dimensions are of different types, including strings,
Booleans and numbers.

In order to be able to use the XCSR for KDD’99 data-
set, the data must first be normalized. The normalization
process increases the number of features from 42 to 118 (see
Section 4 for details). One important property of the nor-
malized data is that most of its features have value 0. In
other words, we are dealing with sparse data with a high
number of dimensions. Hence, there is a high chance that
some of the features in the data are correlated or redundant.
In order to exploit this characteristic, we can use a dimen-
sionality reduction technique to “compress” the problem and
reduce the search space for the learning algorithm.

361

Principal Component Analysis (PCA) is a linear dimen-
sionality transformation method, capable of reducing the
number of dimensions of a data-set by transforming the
problem into a new search space. In this paper, we inves-
tigate if using PCA as a preprocessing step can reduce the
time and computational resources needed by XCSR in such
high-dimensional problems while maintaining its classifica-
tion accuracy.

In the next section, we review the related works done in
this area and present background information about LCSs
and PCA. Then, in Section 3, we introduce the use of PCA
alongside XCSR. In Section 4, we present experiments that
explore the performance of XCSR on a KDD’99-like data-
set, with and without PCA with different parameter settings
and discuss the results. Then, in Section 4.3 we briefly dis-
cuss the criteria in setting the number of principal compo-
nents. Finally, Section 5 concludes the work.

2. RELATED WORKS
There have been some previous studies on the effects of

higher numbers of dimensions on the performance of ma-
chine learning methods [8], as well as LCS [9]. Howley et
al. [8] discuss the effect of high-dimensional data on ma-
chine learning accuracy, concluding that such data will de-
grade classification accuracy. They propose using PCA in
order to improve the performance of machine learning clas-
sification in problems with high number of dimensions. The
techniques considered include support vector machines, dis-
tance based methods, decision trees, and naive Bayes. Xu
and Wang [23] improve the performance of support vector
machines both in speed and accuracy by using PCA.

Ferrandi et al. [5] use PCA as a linear classifier to com-
pare its performance with that of LCS. Ravichandran et
al. in [13] do a similar thing. They compare the accuracy
and robustness of LCS against a PCA-based distance clas-
sifier and find that LCS on its own can outperform PCA on
its own. However, no analysis and detail are provided. It
should be noted that these works examine XCS which can
only handle binary strings.

In order to test the performance of a PCA-enhanced LCS,
we use a real-world problem: the KDD’99 intrusion detec-
tion data-set [6]. This data-set exhibits many of the com-
plexities and features of real-world applications in one com-
posite problem. The data-set contains 4, 898, 430 experi-
ences (connections) in a “training” file and 311, 029 connec-
tions in the “test” file. A smaller version of the training
file (called training10p), which contains a 10% subset of the
training data at the same distribution as the complete file
is also included in the data-set. For each file, every “con-
nection” has a vector of 41 features and a label. The label
determines if the connection is normal or an attack. There
are 22 types of attack in the training file and 39 in the test-
ing file. Every attack type belongs to one of four attack
categories. Classifiers are trained to identify whether a con-
nection is an attack, and if so, what category the attack is,
so there are effectively five classes a connection may belong
to (the four attack types plus non-attack).

For this data-set, there are two metrics which are tradi-
tionally used for evaluation of performance. The first one
is accuracy, which is the percentage of the correct predic-
tions made by the system and is calculated using true pos-
itive, true negative, false positive and false negative values:
(TP + TN)/(TP + FN + FP + TN). The second metric is

Cost Per Example (CPE) and is calculated using the follow-
ing formula [19]: CPE = 1

N

Pm
i=1

Pm
j=1 CM(i, j) ∗ C(i, j)

where CM is the Confusion Matrix (the number of instances
of class i classified as class j), C is the Cost Matrix (the cost
of misclassifying class i as class j), N the total number of
test instances, and m the number of classes. In the con-
text of network intrusion detection, a smaller CPE means a
better classification. While CPE is an important metric to
show a techniques applicability to the real world problem of
network intrusion detection, accuracy is a better comparison
between two techniques in the general case.

Few examples exist in applying a LCS to the KDD’99
data-set. Shafi et al. [14] analyse two learning classifier sys-
tems, namely XCS and UCS on a subset of KDD’99 data-set,
suggesting some improvements for these two algorithms in
the areas of class imbalances and rarity. They also com-
pare the performance of these methods with other machine
learning algorithms including decision tree methods, naive
Bayes, and distance based methods, and conclude that LCSs
are a competitive approach to the problem. Tamee et al. [18]
proposes using Self-Organizing Maps (SOMs) with LCS for
network intrusion detection. They analyse the performance
of their method and show that the proposed system is able
to perform significantly better than twelve machine learning
algorithms. Maŕın-Blázquez and Mart́ınez Pérez [10] use
a modified version of XCS called linguistic hedged fuzzy-
XCS to tackle the KDD’99 problem; the advantage of their
approach is that their system returns a set of human in-
terpretable knowledge (rules). In [2], Behdad et al. apply
XCSR on the KDD’99 data-set as an example of a real-
world fraud detection problem and report competitive per-
formance.

2.1 Learning Classifier Systems
Learning classifier systems use a population of condition-

action-prediction rules called classifiers to encode appropri-
ate actions for different input states. Rules are of the If-Then
type: if a condition is true, then the corresponding action
will be performed. The decision of which rule to use depend
on the type of LCS used. Some use reward (the prediction in
the classifier triple) the system expects to receive from the
environment as a result of performing the chosen action. In
some methods, this decision is based on the accuracy of the
classifiers matching the current input. In essence, an LCS
attempts to enhance its understanding of the environment
through improving its classifiers over time.

2.1.1 XCS
XCS [21] is an accuracy-based LCS in which it is not the

classifiers which produce the greatest rewards that have the
best chance of propagating their genes into subsequent gen-
erations, but rather the classifiers which predict the reward
more accurately, independent of the magnitude of the re-
ward. When a state is perceived by an LCS, the rule-base is
scanned and any rule whose condition matches the current
state is added as a member of the current ‘match set M . In
XCS — specifically in exploit phases — once M has been
formed, an action which has the highest weighted fitness
prediction is chosen. All members of M that propose the
same action as the chosen rule then form the action set A.
The accuracy of all members of the action set are then up-
dated when the reward from the environment is determined.
Another important difference of XCS over its predecessors

362

is that the GA is applied to A (or niches) rather than the
whole classifier population. This narrows evolutionary com-
petition to between classifiers which can be applied in similar
scenarios rather than all the classifiers in the LCS [15].

2.1.2 XCSR
Traditionally, XCS has been used for problems with bi-

nary strings as input. However, many real-world problems
have continuous values and can not be represented by the
ternary representation used by XCS. A continuous version
of XCS, called XCSR, was introduced by Wilson [22] which
handles these kinds of problems using an interval-based rep-
resentation. For this work, we use the Unordered Bound
Representation (UBR) [17] representation in which the in-
terval predicate takes the form of (pi, qi) where either pi or
qi can be the maximum or minimum bound.

2.2 Principal Component Analysis
Principal component analysis is a feature transformation

technique whose purpose is to find the most important in-
formation; so called compaction through dimensionality re-
duction. It analyses a set of feature vectors (original vari-
ables) and represents them as a set of new orthogonal feature
vectors (new variables) called principal components. These
principal components are calculated using linear combina-
tions of the original variables. The principal components
are listed in the order of importance. That is, the first one
will have the highest variance, the second one, which is or-
thogonal to the first, has the second largest variance, and so
on [11].

The values of the new variables (called factor scores) are
calculated by projecting the original variables onto the prin-
cipal components. Each principal component has an eigen-
value which is calculated by summing the squared factor
scores for that component. Dimensionality reduction is achie-
ved by using only a subset of the principal components (the
first n) instead of using all of them. The choice of n is sub-
jective, and different criteria has been suggested by different
researchers, but a general rule of thumb is to use only the
principal components whose eigen-values are larger than 1.
However, this rule does not work in all domains [12].

For a comprehensive introduction to PCA, the reader is
referred to [1].

3. PCXCSR
In our previous work [2], we used XCSR as a network in-

trusion detection system. We considered both online learn-
ing (where each new instance from the test set may influence
the set of classifiers) and offline learning (where the set of
classifiers is derived from a training set and then statically
applied to a test set). Our resultant system was evaluated
against the KDD’99 data-set [6], with results indicating per-
formance was comparable to that achieved by the winner of
the KDD’99 competition without online learning, and supe-
rior to the performance of the KDD’99 winner when online
learning was used [2].

One problem with using XCSR on this data-set is the high
number of dimensions or features (118 after normalization):
the time performance of XCSR is relatively slow (as a rough
benchmark, these results took more than 20 minutes to run
on a relatively new desktop machine). Hence, the main pur-
pose of this research is to improve the speed of XCSR in
such high-dimensional data-sets.

Our solution is to use PCA to compact the data through
dimensionality reduction. So, after normalizing the data, it
is firstly compacted (transformed) by PCA before given to
XCSR to learn from. XCSR hence learns in a smaller search
space — the space that results from selecting only a fixed
number of dimensions (the n best principal components in
the transformed space). The basis for doing this is that as
these dimensions add the most variance to the input space,
they will most accurately predict the class of each input.
We call this combination of PCA-preprocessing and XCSR,
PCXCSR. This presents a number of potential advantages:

1. By examining only the most significant principal com-
ponents, we reduce the dimensionality of the search
space.

2. As the principal components are linear combinations
of dimensions, the classifier rules may naturally exploit
existing dependencies among features rather than hav-
ing to randomly search out such dependencies.

3. By retaining only the components with the highest
eigenvalues, we eliminate noise caused by less relevant
components.

4. EXPERIMENTS
In order to evaluate the utility of PCXCSR, we compare

its performance with the performance of vanilla XCSR on a
data-set based on KDD’99. Our main interest is exploring
the trade-off between accuracy and time, varying the num-
ber of principal components used by the learning classifier
system.

In order to analyse the effects of using PCA with XCSR, a
random subset of the KDD’99 training10p file was created.
This subset, which we call “kdd-sub”, contains 100, 000 con-
nections (feature vectors). Twenty percent of this data-set
(20, 000 connections) is used for training and the remaining
eighty percent of instances are used for testing. It should
be noted that we are not interested in getting the best re-
sults for KDD’99; we are instead interested in observing the
behaviour of PCXCSR. Since this paper is focused on clas-
sification accuracy, and the fitness function of the learning
classifier system ignores cost, we only use accuracy for mea-
suring overall performance on the data-set.

To start, the data in the kdd-sub data-set was firstly nor-
malized. This involved scaling all quantitative fields to lie
between −1 and 1, and representing all enumerated types
with independent scalar features (so if there were 6 different
values for a type, we would replace this with 6 fields between
−1 and 1). This process resulted in the number of features
growing from 42 to 118, but also ensured the data was very
sparse.

The underlying learning classifier system is based on Butz’s
implementation of XCS [4]. For representation of intervals,
we use the Unordered Bound Representation (UBR) with-
out limiting the ranges to be between 0 and 1. The values
of important XCSR parameters, if not stated differently, are
as follows: N = 50, 000, α = 0.1, β = 0.2, ν = 5, ε0 = 0.01,
θGA = 25, and Sub = 12. In these experiments, we only con-
sider off-line learning, and thus the system does not learn
during the test phase.

MATLAB is used for the PCA pre-processing step. Firstly,
MATLAB’s PCA routine is used to calculate the eigen-vectors
(coefficients in MATLAB) and eigen-values (or latents in

363

MATLAB) for the training data-set. Then, each connection
is normalized and transformed using PCA using n principle
components. Experiments below vary n, with results report-
ing the trade-off in performance (accuracy) versus running
time.

All experiments are repeated 10 times and the results av-
eraged. To keep the consistency of the conditions (especially
the time each experiment takes), experiments are all run on
the same machine (an Intel Core2 Duo 2.50 GHz machine
with 4 GB RAM) under the same load conditions. Reported
times include the time needed to perform the initial PCA
pre-processing.

4.1 Experiment 1: Accuracy vs. Time
In our first experiment different numbers of Principal Com-

ponents (PCs) between 1 and 118 (the number of features
after normalization) are analysed to see what effect the num-
ber of PCs has on both time and accuracy. In our previous
work [2], the population size that gave the best results for
XCSR on KDD’99 was 50, 000. So, we use the same popula-
tion size for XCSR. The other parameter settings for XCSR
are the same as the one in [2]. All the experiments are
repeated 10 times, and the results averaged. The summary
of the results of these experiments can be seen in Figure 1,
where the horizontal access presents the number of principal
components and the accuracy and time are represented by
the left and right axis respectively. As the results for the
vanilla XCSR are independent of the number of principal
components the time and accuracy are represented by two
horizontal lines.

As Figure 1 shows, XCSR can get very high accuracies
(above 99%) by only using a small number of PCs (princi-
pal components). This reduces the amount of information
(size of a single classifier) and consequently all the related
computations (such as finding matchsets) of XCSR. As a
result, when using PCA with only 5 PCs for example, the
time needed for the whole training and testing phases is re-
duced to less then 7% of the time needed when vanilla XCSR
(without PCA) is used (93 seconds vs. 1343 seconds) while
still having the same high accuracy (above 99%).

It is interesting that the accuracy of the XCSR when us-
ing between 5 and 29 PCs is even higher than that of XCSR
without PCA. However, as we continue adding PCs, the ac-
curacy starts to deteriorate. The best explanation for this
behavior is that PCA compacts the data. That is, it stores
the first PC represents the most important feature in the
new space (the feature with highest variance), and the sec-
ond PC is the second important feature and so on. So, when
XCSR is learning in this new feature space when only the
first few “important” PCs are presented to it, the algorithm
focuses its learning process (creating and improving its clas-
sifiers) on these few dimensions. But, when more PCs are
introduced, the attention of XCSR, or at least a part of its
attention, is consumed by these less important (redundant
or even misleading) dimensions. XCSR intrinsically treats
all the dimensions equally and does not give different weights
to the dimensions. Hence, it must effectively learn which di-
mensions to“listen” to, slowing down the rate of its learning.
We plan to examine this problem in future works.

When using 50,000 population size for“kdd-sub”, the time
vanilla XCSR takes is longer than that of PCXCSR with 118
principal components. As these two methods are working
on a data of the same size (118 dimensions), and PCXCSR

requires some additional PCA calculations steps, it is ex-
pected to see the opposite. It is curious and creates a new
avenue for research in this area. The reason may lie in the
linear transformation of PCA which creates a more efficient
decision making space. There are many factors involved in
determining the time PCXCSR requires for classification,
such as match-sets creation, subsumption process, etc. In
future works we will study each aspect of PCXCSR in order
to find the reason for this odd and interesting behaviour.

4.2 Experiment 2: Population vs. Accuracy
vs. Time

As a secondary investigation, we examine the effect of
population size on the accuracy and time required by XCSR
when used with PCA. We know from out previous experi-
ments in [2] that population size directly influences accuracy
of XCSR and the time it needs. In the next set of experi-
ments, we reduce the population size to 4, 000 which is ex-
pected to give very poor accuracies. Again, experiments are
done for both vanilla XCSR and PCXCSR. Figure 2 shows
the results of these experiments, contrasting the time needed
and accuracy achieved by each different setting, namely dif-
ferent number of PCs.

This time, the effect of PCA is much more pronounced.
As expected, vanilla XCSR can not perform as effectively
as it did with population size of 50, 000 and its accuracy
drops from 99% to 33%. But, when PCA is used alongside
the XCSR, we get accuracies as high as 99%. Such high
accuracy is achieved by using as few as 5 PCs, and even
smaller numbers yield reasonable performances. Here, again
we see the same behavior of losing accuracy when adding
PCs to our PCA calculations; for instance, when 20 PCs are
used, the accuracy drops to 28%.

The last set of experiments are similar to the previous one,
but this time we use many different population sizes ranging
from 50 to 50, 000. These experiments show that PCXCSR
is able to give very good results with only a small popula-
tion, provided only a small number of principal components
are used. PCXCSR is able to achieve an accuracy in ex-
cess of 98% with a population of 500 (2-4 PCs), and is able
to achieve an accuracy in excess of 99% with a population
of 4, 000 (5-11 PCs). In contrast, without principal compo-
nent analysis XCSR is only able to achieve an accuracy of
20% with a population of 500 and 32% with a population of
4, 000. We see that increasing the population beyond 4, 000
allows PCXCSR to tolerate more principal components, but
not significantly improve the result. For example, the best
accuracy achieved with the each of the populations 4, 000,
25, 000 and 50, 000 was 99.5%, and each achieved this ac-
curacy using only 9 principal components. The time taken
to achieve this best accuracy was 65 seconds for the 4, 000
population, 140 seconds for the 25, 000 population and 144
seconds for the 50, 000 population.

Figure 3 shows the summary of these experiments in terms
of accuracy.

4.3 Setting the number of principal compo-
nents

The eigen-values for all the principal components of the
training portion of “kdd-sub” is demonstrated in Figure 4.
As can be seen in this figure, roughly after 10 principal com-
ponents, the contribution of each new eigen-value drops to
below 1. This corresponds to Figures 1 and 2, in which the

364

400

600

800

1000

1200

1400

97%

98%

99%

100%

T
im

e
 (

s)

A
cc

u
ra

cy

0

200

400

600

800

1000

1200

1400

95%

96%

97%

98%

99%

100%

1 10 19 28 37 46 55 64 73 82 91 100 109 118

T
im

e
 (

s)

A
cc

u
ra

cy

Number of Principal Components

PCXCSR Accuracy XCSR Accuracy PCXCSR Time XCSR Time

Figure 1: Accuracy and running time for vanilla XCSR vs. PCXCSR with population sizes 50,000.

40

60

80

100

120

140

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
 (

s)

A
cc

u
ra

cy

0

20

40

60

80

100

120

140

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
 (

s)

A
cc

u
ra

cy

Number Of PCs

PCXCSR Accuracy XCSR Accuracy PCXCSR Time XCSR Time

Figure 2: Accuracy and running time for XCSR vs. PCXCSR with population sizes 4,000.

365

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
cc

u
ra

cy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
cc

u
ra

cy

Number of Principal Components

PCXCSR 50 XCSR 50 PCXCSR 100 XCSR 100 PCXCSR 500 XCSR 500

PCXCSR 4,000 XCSR 4,000 PCXCSR 25,000 XCSR 25,000 PCXCSR 50,000 XCSR 50,000

Figure 3: Accuracy of XCSR vs. PCXCSR using different population sizes.

accuracy reaches its peak and then starts to deteriorate. Fu-
ture work will seek to identify an appropriate mechanism to
select the number if principal components, given the distri-
bution of the corresponding eigenvalues. Although we note,
even a single principal component can yield reasonable re-
sults.

Finally, we note the trade off between dimension, popula-
tion and time:

1. XCSR (population 50,000) will achieve an accuracy of
98.5% in 1343 seconds;

2. PCA-XCSR (population of 50,000) with 5 principal
components will achieve an accuracy of 99% in 100
seconds;

3. PCA-XCSR (population 4,000) with 9 principal com-
ponents will achieve an accuracy of 99% in 68 seconds;

4. XCSR (population 4,000) will only achieve an accuracy
of 33%.

We see that augmenting XCSR with PCA allows us to achieve
the same high accuracy, but with a reduced population and
dimension resulting in much faster learning (almost twenty
times as fast). This, of course, depends on us finding an
appropriate combination of population size and number of
principal components. Further investigation is required to
determine effective heuristics to do this.

5. CONCLUSION AND FUTURE WORKS
In this work, we examined the challenge of high dimen-

sionality for LCSs and investigated the use of PCA as a

pre-processing step for XCSR in order to compact the search
space the LCS must explore. Our experiments on a KDD’99-
related data-set showed that XCSR can use the compacted
data produced by PCA very effectively, obtaining very high
accuracies in a much shorter running time, at least in this
problem domain. This PCA-enhanced XCSR also reduces
the population size parameter of LCS significantly.

We note that as PCXCSR uses PCA as a preprocessing
step, it is not innately capable of online learning, which
presents an interesting challenge to explore. In the future,
we will examine the effects of running PCA on just a sample
of the population, and explore how one might transform a
linear basis during (online with) the learning process.

As discussed earlier, work by Howley et al. [8] used seven
different machine learning methods for classifying high di-
mensional spectra data. They analysed these methods with
and without PCA, and based on a degragation of perfor-
mance for C4.5 and RIPPER when used with PCA, they
conclude “poor results can be achieved when PCA is used
in combination with rule-based learners” [8]. However, this
work shows that this statement is not necessarily correct in
all cases. XCSR, which is a rule-based classification method,
combined with a population based approach can perform
better when it is used with PCA.

It would also be interesting to compare PCXCSR with
XCSF [20]. XCSF attempts to learn a given function by
sampling points and producing rules that define a piece-
wise linear function. As XCSF uses a linear transformation
within the rules, it is possible that it may be able to iden-
tify the relationships between features that PCXCSR so effi-
ciently exploits. A detailed study of scalability and resource
management for XCSF is given in [16].

366

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4

6

8

10

12

A
cc

u
m

u
la

te
d

 E
ig

e
n

-v
a

lu
e

 C
o

n
tr

ib
u

ti
o

n

E
ig

e
n

-v
a

lu
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

1 10 19 28 37 46 55 64 73 82 91 100 109 118

A
cc

u
m

u
la

te
d

 E
ig

e
n

-v
a

lu
e

 C
o

n
tr

ib
u

ti
o

n

E
ig

e
n

-v
a

lu
e

Principal Component

Eigen-value Accumulated Eigen-value Contribution

Figure 4: Size of eigen-values for principal components and their accumulated contribution.

Future work includes finding the best combination of small-
est population size and lowest number of principal compo-
nents which yield the highest accuracy for XCSR. Further,
other high-dimensional problems in domains other than net-
work intrusion detection should be investigated. Finally,
XCSR treats all the features (dimensions) of its input equally
and does not have a weighing mechanism to favour one di-
mension over another. Adding the capability for different
weights may lead to obtaining the same high accuracies and
low population sizes that PCA provides, without actually
needing PCA. We plan to explore this in our next paper.

6. REFERENCES
[1] H. Abdi and L. J. Williams. Principal component

analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433–459, 2010.

[2] M. Behdad, L. Barone, T. French, and
M. Bennamoun. An investigation of real-valued
accuracy-based learning classifier systems for
electronic fraud detection. In GECCO (Companion),
pages 1893–1900, 2010.

[3] L. Bull. Applications of Learning Classifier Systems.
Springer, 2004.

[4] M. V. Butz and S. W. Wilson. An algorithmic
descrtipion of xcs, 2000. Technical report 2000017,
Illinois Genetics Algorithms Laboratory.

[5] F. Ferrandi, P. Lanzi, D. Sciuto, and M. Tanelli.
System-level metrics for hardware/software
architectural mapping. In Proceedings of the Second
IEEE International Workshop on Electronic Design,
Test and Applications, DELTA ’04, pages 231–236,
Washington, DC, USA, 2004. IEEE Computer Society.

[6] S. Hettich and S. D. Bay. The UCI KDD archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of
California, Department of Information and Computer
Science, 1999.

[7] J. H. Holland. Adaptation. Progress in Theoretical
Biology, 4:263–293, 1976.

[8] T. Howley, M. G. Madden, M.-L. O’Connell, and
A. G. Ryder. The effect of principal component
analysis on machine learning accuracy with
high-dimensional spectral data. Knowledge-Based
Systems, 19(5):363–370, 2006.

[9] M. Kirley and M.Abedini. CoXCS: a coevolutionary
learning classifier based on feature space partitioning.
In Lecture Notes in Computer Science, volume 5866,
pages 360–369, 2009.

[10] J. Maŕın-Blázquez and G. Mart́ınez Pérez. Intrusion
detection using a linguistic hedged fuzzy-XCS classifier
system. Soft Computing — A Fusion of Foundations,
Methodologies and Applications, 13:273–290, 2009.

[11] B. Moore. Principal component analysis in linear
systems: Controllability, observability, and model
reduction. IEEE transactions on automatic control,
26:17–32, 1981.

[12] A. J. O’Toole, H. Abdi, K. A. Deffenbacher, and
D. Valentin. Low-dimensional representation of faces
in higher dimensions of the face space. Journal of the
Optical Society of America, 10(3):405–411, Mar 1993.

[13] B. Ravichandran, A. Gandhe, R. Smith, and
R. Mehra. Robust automatic target recognition using
learning classifier systems. Information Fusion,
8(3):252 – 265, 2007.

367

[14] K. Shafi, T. Kovacs, H. A. Abbass, and W. Zhu.
Intrusion detection with evolutionary learning
classifier systems. Natural Computing, 8(1):3–27, 2009.

[15] O. Sigaud and S. W. Wilson. Learning classifier
systems: a survey. Soft Computing — A Fusion of
Foundations, Methodologies and Applications,
11(11):1065–1078, 2007.

[16] P. Stalph, X. Llora, D. Goldberg, and M. V. Butz.
Resource management and scalability of the XCSF
learning classifier system. Theoretical Computer
Science, 2010.

[17] C. Stone and L. Bull. For real! XCS with
continuous-valued inputs. Evolutionary Computation,
11(3):299–336, 2003.

[18] K. Tamee, P. Rojanavasu, S. Udomthanapong, and
O. Pinngern. Using self-organizing maps with learning
classifier system for intrusion detection. In PRICAI
’08, pages 1071–1076. Springer, 2008.

[19] A. N. Toosi and M. Kahani. A new approach to

intrusion detection based on an evolutionary soft
computing model using neuro-fuzzy classifiers.
Computer Communications, 30(10):2201–2212, 2007.

[20] S. Wilson. Function approximation with a classifier
system. In Proceedings of GECCO’01, pages 974–981,
2001.

[21] S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[22] S. W. Wilson. Get real! XCS with continuous-valued
inputs. In Learning Classifier Systems, From
Foundations to Applications, pages 209–222. Springer,
2000.

[23] X. Xu and X. Wang. An adaptive network intrusion
detection method based on pca and support vector
machines. In X. Li, S. Wang, and Z. Dong, editors,
Advanced Data Mining and Applications, volume 3584
of Lecture Notes in Computer Science, pages 731–731.
Springer, 2005.

368

