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ABSTRACT
Effective rule generalization in learning classifier systems
(LCSs) has long since been an important consideration. In
noisy problem domains, where attributes do not precisely de-
termine class, overemphasis on accuracy without sufficient
generalization leads to over-fitting of the training data, and
a large discrepancy between training and testing accuracies.
This issue is of particular concern within noisy bioinformatic
problems such as complex disease, gene association studies.
In an effort to promote effective generalization we introduce
and explore a simple strategy which seeks to discourage over-
fitting via the probabilistic incorporation of random noise
within training instances. We evaluate a variety of noise
models and magnitudes which either specify an equal prob-
ability of noise per attribute, or target higher noise prob-
ability to the attributes which tend to be more frequently
generalized. Our results suggest that targeted noise incorpo-
ration can reduce training accuracy without eroding testing
accuracy. In addition, we observe a slight improvement in
our power estimates (i.e. ability to detect the true underly-
ing model(s)).
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1. INTRODUCTION
Learning classifier systems (LCSs) have been applied to a

number of bioinformatic problems with the goal of either
classification or mining attribute relationships within the
data. Examples of this include BOOLE++ [16], EpiCS [17],
EpiXCS [18], BioHEL [5], LCSE [15] and other attempts at
medical data mining [32, 7, 1]. Recently, both Michigan and
Pittsburgh LCS were applied to the detection and modeling
of heterogeneous and epistatic, genetic disease associations
[27, 28]. Genetic heterogeneity (GH) occurs when the same
genetic disorder or phenotype is caused by any one of a mul-
tiple number genetic mechanisms or pathways (involving one
or more alleles or loci). Epistasis refers to the interaction
between multiple genetic loci wherein the effect of one or
more loci is masked by one or more others. These evalu-
ations indicated that a LCS’s ability to distribute what it
learns over a population of rules, as opposed to seeking a
solution comprised of a single best rule, offered a promising
strategy to address the problem of genetic heterogeneity.

A fairly ubiquitous concern for LCSs is that of effective
generalization. The generalization property of LCSs has
been referred to as the “feature which uniquely distinguishes
it from classical reinforcement learning systems” [24]. Clas-
sifiers traditionally express generalizations using the “don’t
care” symbol (#) in their conditions. When used in place
of a specified attribute value, this symbol indicates that the
attribute has been deemed unnecessary for predicting class
or action within that classifier. Over the years, a number
of attempts have been made to understand and encourage
effective generalization. Within the framework of XCS, the
most successful and popular LCS to date, Wilson [30] dis-
cussed his generalization hypothesis which identifies an in-
trinsic pressure which implicitly improves rule fitness based
on generality. Given two classifiers having the same action,
where the condition of one is a generalization of the other,
the more general classifier will tend to be included in more
match sets. Given that the genetic algorithm (GA) occurs
in match sets, this would afford the more general classifier
greater reproductive opportunity, likely leading to a higher
numerosity and higher fitness, and eventually displacing the
less general classifier. This concept was extended by Kovacs
[20] in the optimality hypothesis for XCS, which suggests
that a maximally general classifier for each payoff level will
eventually evolve, which will have a greater numerosity than
any other in its payoff level. This hypothesis goes on to sug-
gest that the distribution of classifier numerosities may be
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used to identify a subset of rules from the evolved popu-
lation which represent an optimal solution. [20] and [21]
highlight how ideally, maximally general classifiers should
be the target of LCS learning while over-general classifiers
(observed in [29]) and sub-optimally general (unnecessarily
specific) classifiers should be avoided.

Modifications geared towards generalization in XCS were
introduced in [33]. These included moving the application of
the GA to the action set (as opposed to match set), and the
inclusion of a subsumption mechanism. The evolutionary
pressures these mechanisms drove were later described and
formalized as set and subsumption pressures, respectively
[11, 10]. In particular, two subsumption mechanisms were
introduced, “GA subsumption deletion” which hinders the
insertion of more specific classifiers once an accurate, more
general one evolved, and “action set subsumption” in which
a more general classifier actually absorbs all more specific
classifiers regardless of if it already existed or was just gen-
erated.

In the context of GAssist (a Pittsburgh-style LCS), the
principle of Occam’s razor [23] inspired the implementation
of a hierarchical selection operator [2] and the Minimum
Description Length (MDL) [3] in order to promote well gen-
eralized solutions. This principle suggests that “the sim-
plest explanation of the observed phenomena is most likely
to be the correct one”. Additionally, a windowing heuristic
was implemented, encouraging further generalization pres-
sure [4].

In all of these examples, the emphasis has been placed on
applying pressure towards the evolution of accurate, maxi-
mally general classifiers. However this ideal balance of ac-
curacy and generality is sometimes difficult to encourage,
especially in the context of “real” data that is typically quite
noisy. In comparing XCS with GAssist, the tendency for
XCS to over-fit training data, (especially in smaller datasets)
was observed [1]. Over-fitting often indicates the the system
is learning structure that is idiosyncratic to the training set
and therefore generalization is occurring sub-optimally. As
utilized in [14], cross-validation offers one strategy to de-
termine the extent of over-fitting. In addition [14] and [15]
introduced LCSE, an ensemble based system demonstrated
to achieve better generalization than a single LCS run, with
the drawback of computational expense.

Generally speaking classification and data mining prob-
lems can exhibit two types of noise. The first, which we will
refer to as classification noise, makes it impossible to de-
velop a model or rule-set which classifies with perfect accu-
racy on testing data, even when all predictive attributes are
accurately considered. the second, which we will refer to as
attribute noise, is the inclusion of non-predictive attributes
within the problem domain (i.e. attributes that have no
relationship with class). For example, attribute noise is a
common and important issue when dealing with bioinfor-
matic problems, wherein the distinction between predictive
and non-predictive attributes is often the goal.

A handful of LCS studies have explored the robustness
of these systems to the incorporation of classification noise.
In [12, 9, 13], alternating noise and noise sampled from a
Gaussian distribution was added to the payoff function of
multiplexor problems. [22] generated noise to LED datasets
by swapping attribute values. [6] also generated classifica-
tion noise in a multiplexor problem by flipping the class
label with a certain probability. These problems however

only include attributes which can be characterized as pre-
dictive (no attribute noise). Differently, in the present study
we consider a problem that naturally possesses a great deal
of both classification and attribute noise. In particular we
are interested in dealing with attribute noise and encour-
aging efficient generalization such that rules learned by the
LCS will avoid specifying noisy attributes which contribute
nothing to classification.

With this goal in mind, we explore a simple, computation-
ally inexpensive heuristic which seeks to discourage over-
fitting via the probabilistic incorporation of noise. This ran-
dom artificial incorporation of noise, or RAIN, is designed
to indirectly address the inherent noise and complexity of
real data. LCSs with accuracy-based fitness measures of-
ten strive to achieve a complete-action map [19] with a
respective training accuracy of 100%. In real data (e.g.
disease-gene association), where the solution is only useful
if it can be generalized to unseen data (e.g. testing data),
achievement of this level of training accuracy is meaning-
less. RAIN randomly mutates probabilistically selected at-
tributes at each learning iteration, such that each learning
epoch (i.e. cycle through the entire dataset), the LCS is ex-
posed to a randomly varied version of the original dataset.
We evaluate several implementations of RAIN within an im-
plementation of UCS described in [27]. This evaluation con-
siders different magnitudes of noise, different models which
temporally vary noise magnitude, and the application of
noise which is variably targeted to different attributes in
the dataset.

2. METHODS
In this section we describe (1) the LCS framework imple-

mented to test RAIN, (2) the various implementations of
RAIN and (3) our experimental evaluation of the proposed
strategy.

2.1 LCS Framework
Learning classifier systems (LCS), combine machine learn-

ing with evolutionary computing and other heuristics to pro-
duce an adaptive system that learns to solve a particular
problem. LCSs are closely related to and typically assim-
ilate the same components as the more widely utilized ge-
netic algorithm (GA). The goal of LCS is not to identify a
single best model or solution, but to create a cooperative
set of rules or models which together solve the task. The
solution evolved by an LCS is represented as a population
of rules/models which are utilized collectively to make de-
cisions/classifications. Michigan-style LCSs, often varying
widely from version to version, generally possess four basic
components; (1) a population of rules or classifiers, (2) a
performance component that assesses how well the popula-
tion of rules collectively explain the data, (3) a reinforcement
component that distributes the rewards for correct predic-
tion to each of the rules in the population, and (4) a dis-
covery component that uses different operators to discover
new rules and improve existing ones. Learning progresses
iteratively, relying on the performance and reinforcement
components to drive the discovery of better rules. For a
complete LCS introduction and review, see [26].

[27] previously implemented a version of UCS designed to
accommodate a disease-gene association problem domain.
Similarly, this study tests RAIN in the context of data min-
ing which concurrently examines epistasis and GH, modeled
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as they might simultaneously occur in a single nucleotide
polymorphism (SNP) genetic association study. This prob-
lem domain is particularly challenging and the findings of
[27, 28] suggest that LCSs (particularly UCS) may be adapted
at effectively address it. UCS, or the sUpervised Classifier
System [8], has many similarities to the architecture of XCS
[30] but differs in that it replaces reinforcement learning with
supervised learning, encouraging the formation of best ac-
tion maps (rule sets of efficient generalizations) and alters
the way in which accuracy (and thus fitness) is computed.
UCS was designed specifically to address single step problem
domains such as classification and data mining, where de-
layed reward is not a concern. The implementation of UCS
used in this study was the same as used in [27] with some
minor control modifications leaving the original learning al-
gorithm unchanged.

2.2 RAIN Implementation
As previously described, Michigan LCSs learn iteratively

from the environment (i.e. one sample instance per learning
iteration). At the beginning of a supervised learning iter-
ation, the state and class of a sample is obtained from the
environment. Our incorporation of random artificial noise
takes place here, before rule matching takes place. We will
begin by describing our strategy for RAIN in which each at-
tribute has, within a given iteration, an equal current prob-
ability (Pc) of being permuted. Initially, we specify a maxi-
mum probability of attribute permutation (Pm). We consid-
ered four different temporal models in which Pc varies over
the course of the specified maximum number of learning it-
erations (Im). The first, is uniform as defined by;

Pc = Pm (1)

The second is linear as defined by;

Pc = Ic/Im ∗ Pm (2)

where Ic is the current learning iteration. The third is in-
verse linear as defined by;

Pc = (1 − Ic/Im) ∗ Pm (3)

The fourth is gaussian as defined by;

Pc = a ∗ e
−

x−b
2

2∗c2 (4)

where x = Ic

Im
, the function’s peak height a = 1, its cen-

ter b = 0.5, and it’s width c = 0.2. Illustrations of these
models are given in Figure 1. The permutation of any at-
tribute(s) within the current dataset instance are performed
non-destructively, such that the dataset is not permanently
altered.

In addition to the above models, we also implement RAIN
such that it is variably targeted to different attributes in the
dataset. For this implementation of ’targeted’ RAIN we only
consider the ’uniform’ temporal model, such that Pc = Pm

throughout. However, future implementations could easily
combine targeted noise with the other temporal dynamics
explored above. With targeted RAIN, the individual proba-
bility of permutation for each attribute in the dataset varies
according to a list of attribute weights. The premise of
this alternate strategy is to strategically, and automatically
avoid destructively adding noise to attributes likely to be
important to classification and instead target noise towards
attributes are more likely to be noise themselves. We im-
plement and test two different targeted strategies; Targeted

Figure 1: A simple visualization of the temporal
noise incorporation patterns implemented in this
study.

Generality (TG) and Targeted Fitness Weighted Generality
(TFWG). First we will describe how these lists of weights
are obtained, and updated every learning epoch.

Power, or the success rate, is typically estimated in these
types studies by tracking the frequency with which an algo-
rithm successfully identifies the correct underlying model or
attribute(s), across some number of data set replicates. This
type of estimation is not applicable for LCSs, which evolve
a solution made up of an entire population of rules. In [27] a
strategy for estimating power in LCSs was outlined. Power
is estimated by counting the number of times an attribute is
specified across all rules comprising the population, as op-
posed to how often a ‘#’ is used. This value is weighted
by the numerosity of each rule, and is referred to as the
attribute generality. Specifically, success is achieved if the
total number of rules specifying ‘#’ for each of the predictive
attributes is lower than for any other noise attribute. This
was used as an indicator of which attributes were important
to making accurate classification. This strategy hypothe-
sized that if a LCS is truly learning the underlying model(s)
in a dataset, attributes that are important to the underly-
ing model(s)(predictive attributes) will tend to be specified
more frequently within rules of the population. Conversely,
attributes that are not involved in the underlying model(s)
(noise attributes) will tend to be generalized (‘#’/don’t-care
symbol used) more frequently. Similarly, here we use this at-
tribute generality to direct a higher probability of noise to
attributes which the LCS has learned to be less important
to classification, and less (or no) noise towards those that
are specified more frequently (and are presumably impor-
tant for making accurate classifications). In TG, our weight
list is simply this list of attribute generalities. In TFWG the
attribute generalities are weighted by both the numerosity
and fitness of each respective rule in the population. During
the very first epoch, no noise is added. Only after the algo-
rithm has seen the whole training set does targeted RAIN
turn on. The process of calculating and updating the tar-
geted weight list occurs at the end of each epoch (i.e. after
each cycle through the training data).

Next we describe how this list of attribute weights is uti-
lized by RAIN to probabilistically determine which attribute
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will be permuted. This description is the same for both TG
and TFWG. As with our temporal models we specify Pm.
This value is used to randomly determine how many at-
tributes will be permuted in the present dataset instance.
Next, we find the minimum weight in the weight list and
subtract that value from all weights in the list. This ensures
that the attribute most often specified in the rule popula-
tion has a zero probability of being permuted. Each time
an attribute is to be permuted, roulette wheel selection is
employed to choose that attribute based on the adjusted
weights of the list.

2.3 Experimental Evaluation
To evaluate RAIN we used a subset of the simulated data

sets described in [27, 28] which concurrently model GH and
epistasis as they might appear in a SNP gene association
study of common complex disease. All data sets were gener-
ated using a pair of distinct, two-locus epistatic interaction
models, both utilized to generate instances (i.e. case and
control individuals) within a respective subset of each fi-
nal data set. Each two-locus epistatic model was simulated
without Mendelian/main effects, as a penetrance table us-
ing [25]. The simulated models in this study each possessed
a heritability of 0.2, minor allele frequencies of 0.2, and an
architectural“difficulty”designation of“moderate” [27]. Bal-
anced datasets (i.e. datasets with an equal number of cases
and controls) simulated from these models were generated
as having four different sample sizes (200, 400, 800, 1600)
and a heterogeneous mix ratio of 50:50. Additionally 10-
fold cross validation (CV) was employed to measure average
testing accuracy and account for over-fitting. Together a
total of 80 simulated datasets x 10 fold CV (or 800 runs of
the algorithm) were accomplished for each of the 24 exper-
imental configurations of RAIN and a control run. These
datasets were selected based on the results of [27] such that
our control evaluation (without RAIN) would demonstrate
varying success.

In this study we specified a maximum micro population
size of 1600 and allowed the algorithm to run up to 500000
learning iterations with interval evaluations at 50000, 100000,
and 200000. All other UCS run parameters were left at their
default settings as in [27]. For each run we track the fol-
lowing characteristics; training accuracy, testing accuracy,
generality, macro population size, the power to find both
underlying models, the power to find at least one underly-
ing model, and run time. Here, generality is the average
proportion of “don’t care” symbols within the entire rule
population (taking numerosity into account). Power is a re-
flection of our ability to mine knowledge from the evolved
rule population. Each of these values represent an average
over the 10 CV runs. For the four temporal models and two
targeted implementations of RAIN we ran evaluations at Pm

values of 0.001, 0.01, 0.05, and 0.1.
Statistical comparisons between implementations of RAIN

and our control runs were made using the non-parametric
Kruskal-Wallis paired with the Mann-Whitney test due to
a lack of normality in the value distributions. All statisti-
cal evaluations were completed using R. Comparisons were
considered to be significant at P ≤ 0.05.

3. RESULTS
Figure 2 summarizes the average run characteristics for all

experimental configurations after 500,000 iterations. Addi-
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Figure 2: Comparing the RAIN test configurations
after 500,000 learning iterations. Each data point
represents an average over 80 datasets, and a to-
tal of 800 UCS runs (taking CV into consideration).
Grey vertical lines delineate our different RAIN im-
plementations where “C” stands for control, “U” for
uniform, “L” for linear, “IL” for inverse linear, “G”
for gaussian, and ‘TG’ and ‘TFWG’ are the two tar-
geted implementations described. The horizontal
lines are drawn through the average control group
values for quick comparison to RAIN tests.

tionally, Figure 3 illustrates the distribution of macro popu-
lation sizes and Figure 4 illustrates the distribution of gener-
ality for these same experimental configurations after 500,000
iterations. A clear initial observation is the poor perfor-
mance of the first four temporal RAIN models we examined
(i.e. uniform, linear, inverse linear, and gaussian) each of
which permute attributes with equal probability. While at
Pm = 0.1, both uniform and linear models significantly re-
duced training accuracy, this was accompanied by a signif-
icant reduction in testing accuracy. A significant reduction
in generality was observed for intermediate values of Pm for
all temporal models except inverse linear. At Pm = 0.1
we observed a dramatic reduction in the algorithm’s ability
to detect the attributes of both underlying models. While
this difference was not statistically significant, power com-
parisons for all temporal models suggested that adding noise
with equal probability to all attributes in the dataset tended
to harm our ability to identify the attributes involved in the
underlying genetic models.

These trends were generally consistent across all interval
evaluations (data not shown). Notably however, as noise di-
minished over time in the inverse linear and gaussian mod-
els, training accuracy and macro population size recovered.
In other word the application of high Pm during earlier it-
erations, diminishing to negligible Pm by the final itera-
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Figure 3: Comparing macro population size distri-
butions after 500,000 learning iterations. Each box
plot includes 80 training accuracy averages taken
over 4 different data set samples sizes. The star
within each box plot indicates the average of the 80
values. RAIN configurations on the x-axis are the
same as in Figure 2.

tion yielded no significant impact on overall performance.
This finding is consistent with how learning classifier sys-
tems adaptively evolves it’s rule population to accommodate
changing environments.

These findings led us to the development of our targeted
RAIN strategies (i.e. TG and TFWG) in an attempt to
implement noise such that it probabilistically targeted at-
tributes less likely to be important to classification, and
therefore avoid damage to power or testing accuracy. The
results of our two targeted RAIN strategies were encourag-
ing, especially at Pm > 0.01. At these noise magnitudes,
both TG and TFWG yielded significantly lower training ac-
curacies while preserving testing accuracy and increasing the
power to find one or both of the underlying models (although
not statistically significant). Additionally, generality recov-
ered at these higher Pm values, while at Pm = 0.01 it was
significantly lower. Also, dramatically illustrated in Figure
3, the macro population size is significantly increased in TG
and TFWG. Figures 3 and 4 also suggest that, in general,
higher magnitudes of Pm have a tendency to consistently
increase macro population size, while also decreasing the
variability observed in these values across our experimen-
tal runs. No significant differences between TG and TFWG
were observed. Overall, high Pm values consistently required
a small but statistically significant run time (the worst case
took approximately 15% more time). These results were
largely consistent at all iteration checkpoints.
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Figure 4: Comparing generality distributions after
500,000 learning iterations. Each box plot includes
80 training accuracy averages taken over 4 different
data set samples sizes. The star within each box plot
indicates the average of the 80 values. RAIN con-
figurations on the x-axis are the same as in Figure
2.

4. CONCLUSIONS AND FUTUREWORK
In the present study we explore the implementation of the

random artificial incorporation of noise (RAIN) in a learn-
ing classifier system environment in an effort to improve
efficient generalization and deter over-fitting in a complex
genetics problem domain. Our results indicate that while
the incorporation of RAIN with equal attribute probability
is ineffective, attribute targeting of RAIN was able to reduce
over-fitting, evidenced by a significant decrease in training
accuracy without reducing testing accuracy. Additionally,
improvements in power (successful attribute identification)
offer evidence that RAIN may improve the mining of pre-
dictive attributes in LCSs. We also observed increases in
macro population size with the addition of higher magni-
tudes of noise. Intuitively, since noise introduces more vari-
ety and less regularity during training, an increased diversity
of classifiers in the population is needed to cover that ever
changing set. Further exploration is required to explore the
drop in generality observed with intermediate noise magni-
tudes, and the recovery of that generality (when compared
to the control), when higher noise magnitudes were applied.
In addition, our future work will explore a broader range of
Pm values, implement a hybrid version of rain with combines
attribute targeting with a temporal model, and implement
RAIN with adaptive Pm values so that the frequency of noise
incorporation may adjust itself according to the systems per-
formance over time.
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