
Automatically Defined Functions for Learning Classifier
Systems

Muhammad Iqbal
Victoria University of

Wellington

Muhammad.Iqbal@

Mengjie Zhang
Victoria University of

Wellington

Mengjie.Zhang@

Will Browne
Victoria University of

Wellington

Will.Browne@ecs.vuw.ac.nz

ABSTRACT

This work introduces automatically defined functions (ADFs)
for learning classifier systems (LCS). ADFs had been suc-
cessfully implemented in genetic programming (GP)for vari-
ous domain problems such as multiplexer and even-odd par-
ity, but they have never been attempted in LCS research field
before. ADFs in GP contract program trees and shorten
training times whilst providing resilience to destructive ge-
netic operators. We have implemented ADFs in Wilson’s
accuracy based LCS, known as XCS [14]. This initial inves-
tigation of ADFs in LCS shows that the multiple genotypes
to a phenotype issue in feature rich encodings disables the
subsumption deletion function. The additional methods and
increased search space also leads to much longer training
times. This is compensated by the ADFs containing useful
knowledge, such as the importance of the address bits in the
multiplexer problem. The ADFs also create masks that au-
tonomously subdivide the search space into areas of interest
and uniquely, areas of not interest. The next stage of this
work is to implement simplification methods and then de-
termine methods by which ADFs can facilitate scaling for
more complex problems within the same problem domain.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Metrics—Genetics-Based

Machine Learning, Learning Classifier Systems

General Terms

Algorithms, Performance

Keywords

Learning Classifier Systems, Genetic Programming, CUDA,
Automatically Defined Functions, Pattern Recognition

1. INTRODUCTION
Genetic programming (GP) and learning classifier systems

(LCS) are two population-based evolutionary computation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

techniques. GP has ability to generate a computer program
automatically for a given task. LCS generate a population of
production rules that together address a task. Both GP and
LCS have been shown to solve complex problems, but are
relatively slow compared with some other artificial intelli-
gence techniques, such as decision trees. Often they provide
non-optimally compact solutions in terms of program bloat
and extraneous rules, which require simplification and com-
paction respectively.

The GP generated computer program is normally rep-
resented as a tree, which may contain unnecessary terms
(bloat) and non-optimum expressions (a phenotypic behaviour
may not be represented by the most compact genotype).
Partly, in order to address these problems, ADFs have been
successfully implemented in GP to make the tree program
simple and concise [7]. ADFs also have the benefit that
the evolution of the program tree is relatively protected
from crossover and mutation disruptions. Speed up of per-
formance is also claimed compared to GP without ADFs.
Higher order functions (abstraction) have been investigated
in LCS, but not widely adopted [5]. Thus, the objective of
this work is to introduce ADFs in LCS. Comparisons will be
made with ADFs in GP on the multiplexer problem.

One possibility for speeding up the performance of evolu-
tionary techniques is to use the recently introduced graph-
ical processing units (GPUs) that have been programmed
for general purpose problem solving in order to leverage the
power of the parallel processing. An initial study of GP
in GPUs utilises the multiplexer problem domain [8], which
has been widely studied in LCS research. Utilising the same
computational platform and problem domain is anticipated
to lead to interesting insight into the scaling and operation
of both techniques. The introduction of ADFs in LCS is
novel and the benefit of ADFs to GP and LCS in the CUDA
platform will be investigated.

The ultimate aim of this work is to utilise the parallel
threaded nature of GPUs to identify the building blocks of
the optimal solution during the evolutionary process such
that the more compact and scalable solutions may be deter-
mined faster than previously. The aim of this exploratory
work is to examine whether the ADFs created LCS provide
useful building blocks of information.

The rest of the paper is organised as follows. Section 2
describes the learning classifier systems concept, tree-based
genetic programming, automatically defined functions and
general purpose graphics processing units. In section 3 the
benchmark GP technique is detailed, which is extended to
include ADFs and subsequently ADFs are introduced in

375

LCS. In section 4 experimental results are presented and
compared after introducing the multiplexer problem domain.
Section 5 is discussion comparing LCS and GP with and
without ADFs on the CUDA platform. In the next sections
this work is concluded and the future work is outlined.

2. BACKGROUND

2.1 Learning Classifier System
Traditionally, a learning classifier system represents an

agent enacting in an unknown environment via a set of sen-
sors for input and a set of effectors for actions. After ob-
serving the current state of the environment, the agent per-
forms an action, and the environment provides a reward, as
depicted in Figure 1. LCS can be applied to a wide range
of problems including reinforcement learning problems, clas-
sification problems and function approximation. LCS have
also been adapted to supervised learning where the environ-
ment also returns the ‘correct’ optimal action through the
UCS (sUpervised Classifier System) framework [11].

XCS is a formulation of LCS that uses accuracy-based
fitness to learn the problem by forming a complete mapping
of states and actions to rewards. The agent has two modes of
operation, explore (training) and exploit (application), that
can be described as follows (for a more detailed description
refer to [14]).

In the explore mode the agent attempts to obtain infor-
mation about the environment and describe it by creating
decision rules:

1. observes the current state of the environment, s ∈ S.

2. selects classifiers from the classifier population [P] that
have conditions matching the state s, to form the match
set [M].

3. performs covering: for every action ai ∈ A in the set
of all possible actions, if ai is not represented in [M],
a random classifier is generated that matches s and
advocates ai, and added to the population.

4. forms a system prediction array, P (ai) for every ai ∈ A

that represents the system’s best estimate of the payoff
should the action ai be performed in the current state
s. Commonly, P (ai) is a fitness weighted average of
the payoff predictions of all classifiers advocating ai.

5. selects an action a to explore (probabilistically or ran-
domly) and selects all the classifiers in [M] that advo-
cated a to form the action set [A].

6. performs the action a, recording the reward from the
environment, r, and uses r to update the predictions
of all classifiers in [A].

7. when appropriate runs a genetic algorithm (GA) to
introduce new classifiers to the population. In XCS,
two parent classifiers are selected from [A] and two
offspring are produced by applying crossover and mu-
tation on their conditions, such that both offspring
match the currently observed state.

Additionally, the explore mode may perform subsump-
tion, to merge more specific classifiers into more general,
accurate ones, and deletion, if the classifier population size

grows larger than the specified limit. In contrast, in the ex-
ploit mode the agent does not attempt to learn and simply
performs the action with the best predicted payoff.

Figure 1: Schematic depicition of a learning classi-
fier system, dashed outline block showing inclusion
of ADFs.

The Markov property of the environment is assumed, mean-
ing that the same action in the same state will result in the
same reward. LCS have been shown to be robust to small
amounts of noise and are often more robust than most ma-
chine learning techniques with increasing amounts of noise
[3]. The generalisation property in LCS allows a single
rule to cover more than one state provided that the action-
reward mapping is similar. Traditionally, generalisation in
LCS classifier conditions is achieved by the use of a special
‘don’t care’ symbol (#) in the ternary representation, which
matches any value of a specified attribute in the vector de-
scribing the state s. Other representations, including GP
like S-Expressions and Reverse Polish Notation have also
been used successfully [5, 10].

2.2 Tree-Based Genetic Programming
Genetic programming (GP) is an evolutionary approach

to generate computer programs for solving a given task auto-
matically. The task to be solved is represented by a primitive
set of operations, known as the function set in evolution-
ary computation community, and a set of operands, known
as the terminal set. The generated computer programs are
commonly represented by a tree. The nodes of the tree are
functions and leaves are the terminals.

To generate a computer program using GP, a set of input-
output pairs is needed for training the technique along with
sets of functions and terminals. GP attempts to construct
a computer program that maps each of the input-output
pairs correctly. For example,if the input-output pairs set is
{(0,1), (1,3), (2,7), (3,13), (4,21), (5,31), ... } and {+,-,*,/}
and {x,1} are the function set and terminal set respectively

376

then the optimal corresponding GP generated program is as
shown in Figure 2.

Figure 2: Tree GP Example.

Initially a population of random programs is created. Then
each program from this population is evaluated to determine
how many pairs it can match correctly from the complete
set. The two best programs are selected using a selection
method such as tournament selection or roulette wheel se-
lection. Using crossover operator two offspring are produced
from these two selected parents. Mutation may be applied
to the offspring. Commonly, the two worst fit individuals
from the population are replaced by these two created chil-
dren. This process is repeated for a fixed number of times
or until an ending criterion is met.

GP is a technique that can produce a computer program
automatically to maximally map a input-output pairs set.
But to generate this program it needs many CPU cycles
and a lot of memory space [13].

2.3 Automatically Defined Functions
The computer program represented as a tree in tree based

genetic programming often have repeated patterns in it that
can be treated as separate modules. The concept of auto-
matically defined functions (ADFs) was introduced by Koza
in 1994 [7]. The main GP program has one or more func-
tion defining branches along with a result producing branch.
These function defining branches evolve simultaneously with
the result producing branch. The result producing branch
can call any of the ADFs in its associated function defin-
ing branches, but an order is specified for calling a function
within a function defining branch. Otherwise it is possible
that recursive function calls can result in infinite loop.

The ADFs make the tree program more readable and con-
cise. Thus the relatively simple and reduced size program
is evolved more easily than a large program without ADFs.
The crossover and mutation operators can disrupt useful
patterns in large trees, but the inclusion of ADFs can protect
the module from these disruptions. When ADFs are being
used then a constrained crossover and mutation is applied.
Result producing branches are crossed over with only result
producing branches in other individuals in the population
and similarly the function defining branches are crossed over
only with function defining branches. The ADFs evolved in
one task can be reused for any other similar task.

2.4 General Purpose Graphics Processing Units
Graphics processing units (GPUs) were originally designed

for graphics processing application and the gaming indus-
try. GPUs have orders of magnitude more computational
power as compared to CPUs. The one reason for this speed
up is that GPUs devote more transistors to the processing
unit. The rapid increase in the performance of GPUs, cou-
pled with recent improvements in its programmability, have
made GPUs a compelling platform for computationally de-
manding tasks in a wide variety of application domains [12]
including evolutionary computation research. The genetic
programming and learning classifier systems are computa-
tionally intensive methodologies so they are prime candi-
dates for using GPUs. There are a number of tool kits
available for programming GPUs such as CUDA, MS Ac-
celerator, Rapid Mind and Shader Programming. CUDA
is an archticture introduced by NVIDIA to enable software
developers to code general purpose applications that run on
the massively parallel hardware on GPUs. CUDA-C is a
C-like programming language, which is becoming a common
platform for evolutionary computation research [4, 9].

Figure 3: CUDA Programming Model[1].

CUDA is an heterogeneous serial - parallel (CPU + GPU)
programming model, shown in Figure 3, that lets program-
mers focus on parallel algorithms instead of focusing on the
mechanics of a parallel programming language. Serial code
in an application executes in a host thread whereas paral-
lel portions of the application are executed on the device
(GPU) as kernels (A kernel is a function that runs on a
GPU). One kernel is executed at a time and many threads
execute each kernel. Each thread executes the same code on
different data based on its threadID. CUDA programming
uses a massive number of light-weight threads to exploit the
parallelism provided by GPUs. Threads are grouped into

377

thread blocks. Each thread has a unique ID within a block.
Thread blocks are grouped into a grid. Each block within
a grid has unique block ID. Grids are executed on a GPU
device.

Figure 4: CUDA Memory Model[1].

CUDA threads may access data from multiple memory
spaces during their execution as illustrated by Figure 4. Reg-
isters are the fastest form of memory on the GPU and are
only accessible by individual threads and have the lifetime
of a thread. Each thread also has a private local memory.
Each thread block has a shared memory visible to all threads
of the block and with the same lifetime as the block through
which they can communicate. Finally, all threads have ac-
cess to the same global memory. Data to be processed must
be copied to GPU’s global memory.

3. METHODS
The introduction of ADFs in LCS is not a straightfor-

ward representational switch from ternary to S-expression
representation as in previous work [5, 10]. Instead, ADFs
determine if their rule matches the message instance (state).
Although there is simply the same number of ADFs as con-
dition features, e.g. 6 for the 6-bit MUX problem, there is
a decoupling between an ADF and position within the con-
dition, i.e. the order of ADFs is unimportant. Each ADF
must return true (set as logical 1) for a rule to match and
be considered by the select procedure in order to effect its
associated action.

To develop this novel system the results of five approaches
based on either GP or LCS with and without ADFs have
been investigated. All of these are implemented on TESLA
GPU using CUDA-C language. The approaches are: 1) GP
without ADF, 2) GP with one ADF, 3) GP with two ADFs,
4) LCS without ADF, and 5) LCS with ADFs. The example
problem used in experimentation is the multiplexer problem
domain good to previous investigations in both the GP and

LCS community. The first benchmark technique is a stan-
dard implementation of Langdon’s GPU package [8] where
function set is {AND, OR, NAND, NOR, NOT} and termi-
nal set is {D0, D1, D2, ... , Dn-1} having n as 6, 11, and 20
for 6-, 11-, and 20-bits multiplexer examples respectively.

Langdon’s GPU package is then modified by including one
ADF branch (approach 2). Further, the CUDA implemen-
tation is improved to reduce the computational time as com-
pared with the benchmark approach (1). Originally in Lang-
don’s GPU package, each GP program from the population
was being interpreted by a single thread. In this case, the
number of threads is equal to the population size. Here a
thread block is allocated to each GP program instead of a
single thread. This reduced the arithmetic intensity because
now the fitness cases of a GP program have been parallelized
among all the threads of a thread block.

The ADF takes three arguments, which are ARG0, ARG1,
and ARG2. The motivation behind the ADFs inclusion was
to generate simple and more evolvable genetic programs.
Section 4.2 shows that the inclusion of just one ADF did
not reduce the genetic tree down to a reasonable size, but
the approach took relatively less time to solve the multi-
plexer problems compared with the benchmark. Therefore,
an additional ADF was introduced (approach 3). The main
result producing branch can call both ADFs: ADF0 and
ADF1. ADF1 can call ADF0, but ADF0 can not call ADF1
to prevent infinite loops.

The fourth approach is an implementation of learning clas-
sifier systems on a TESLA GPU using CUDA-C. It is the
manual conversion of the Butz’s“implementation of the XCS
classifer system in Java - June 2000” into CUDA-C. GPU is
used only for column-based matching of ternary conditions
in parallel as in work by Lanzi and Loiacono [9].

Figure 5: An ADF used as don’t care symbol in the
XCS’s condition [Here ‘|’ and ‘∼’ denote OR and
NOT operators respecively].

The main contribution in this work is the introduction
of ADFs instead of ternary conditions in Wilson’s accuracy
based LCS termed XCS[14](approach 5). A population of
tree-based ADFs is created at the start of training. This
population is not totally random; it has some manually de-
signed ADFs that incorporate each operand alone as well
as with each operator. The number of manually generated
ADFs is 252, 902, and 3080 for 6-, 11-, and 20-bits multi-
plexer examples. The function set and terminal set are the

378

same as used in approach 1. As in the base LCS (approach
4), GPU is only used for condition matching. The ternary
symbols in the condition are initially replaced by randomly
selected ADFs from the ADF population in order to cre-
ate the initial rule base. A condition is considered matched
if all its ADFs return true on evaluation against the given
condition from the environment. A special ADF, shown in
Figure 5, is used as the don’t care symbol that always re-
turns true.

It is anticipated that if useful building blocks of informa-
tion are present in the ADF population, then they will be
identifiable by examining fit classifier’s condition.

4. EXPERIMENTAL RESULTS
All the experiments have been repeated 10 times with a

known different seed in each run. The symbols &, |, d, r,
and ∼ denotes AND, OR, NAND, NOR, and NOT opera-
tors respectively. The training set size for all of the three GP
methods is 64, 2048, and 2048 for 6-, 11-, and 20-bits multi-
plexers respectively. It is to be noted that for 20-bits multi-
plexers a subset of the whole training set (220 = 1048756) is
being used as suggested by Langdon in [8]. Although 37-bit
problems learn successfully, the time taken was too long for
statistically valid repeated tests.

The system uses the following parameter values, as defined
in XCS: fitness fall-off rate α = 0.1; prediction error thresh-
old ǫ0 = 10; fitness exponent ν = 5; learning rate β = 0.2;
threshold for GA application in the action set θGA = 25; ex-
perience threshold for classifier deletion θdel = 20; fraction
of mean fitness for deletion δ = 0.1; classifier experience
threshold for subsumption θsub = 20; crossover probability
χ = 0.8; mutation probability µ = 0.04; and the selection
method is tournament selection with tournament size ratio
0.4. The number of micro classifiers is 2000 and the number
of ADFs used is 2000, 5000, and 8000 for 6-, 11-, and 20-bits
multiplexers respectively.

4.1 Multiplexer Problem Domain
A multiplexer is an electronic circuit that accepts n inputs

and gives one output. The n inputs are divided into two
groups: k address bits and the remaining n-k data bits.
Actually n is of the form k + 2k. Hence the data bits are n-

k = 2k. For example, in the case of 6-bits multiplexer there
are 2 address bits and 4 data bits. If we denote address bits
by A0 and A1 and data bits by D0, D1, D2, and D3 then
6-bits multiplexer works as described in Table 1. Where “#”
is the don’t care symbol. It can be either 0 or 1 but it has
no effect on the output signal. The value of address bits is
used to select the data bit to be given as output.

Table 1: 6-bits multiplexer.
Input Output

A0 A1 D3 D2 D1 D0
0 0 # # # 0 0
0 0 # # # 1 1
0 1 # # 0 # 0
0 1 # # 1 # 1
1 0 # 0 # # 0
1 0 # 1 # # 1
1 1 0 # # # 0
1 1 1 # # # 1

In the experimentation both address and data bits are de-
noted by D (instead of denoting address bits by A and data
bits by D), just to simplify the programming. Lower order
bits are for address and the remaining bits are for data. For
example in case of 6-bits multiplexer D0 and D1 are address
bits and the remaining D2 to D5 are data bits. Multiplexer
problems are highly non-linear and therefore relatively diffi-
cult to learn. Multiplexer problems have been very common
in GP and LCS research community to be used for testing
an experiment because they contain generalizations and are
suitable for examining the scalability of the algorithm.

4.2 Methods in Comparison
When comparing the different approaches, it was debat-

able whether to use ‘CPU cycles’ or the time taken as a mea-
sure of computational speed. Although the former is more
robust to outside interference the latter was more illustra-
tive of performance especially as the computations were run
on a dedicated machine. Furthermore, general trends were
of interest rather than fractional amounts of comparative
performance improvement. Due to the lack of compaction
in GP without ADFs the time taken was longer than with
ADFs, although the number of generations required to reach
optimum performance was actually less.

The benchmark GP program solved the multiplexer prob-
lem with increasing time as the problem domain scaled. The
introduction of ADFs helped contract the overall tree as well
as speeding up the performance as the complexity of the
multiplexer problem increased, see Table 2.

Table 2: Comparison of GP methods with and
without ADFs [Population for GP without ADF is
262144 and Population for GP with ADFs is 48640].

Although standard XCS was generally faster than stan-
dard GP, there was a large increase in training time with
the addition of ADFs in LCS, see Figure 6. There is a dif-
ference between ‘generation’ in GP and ‘iteration’ in LCS.
The former is the presentation of the complete training set
(or in the case here for 20-bits MUX a substantial subset) of
the training data. The latter is a single instance of a training
pair.

The results for time comparison as shown in Figure 7 sug-
gest that the LCS technique exhibits better scaling as the
complexity in the domain increases. XCS with ADFs is the
slowest approach on the six-bit problem, but at the 20 bit
problem is faster than all GP approaches, only being a bet-
tered by the standard XCS approach, which is the fastest in
all problem domains. This suggests LCS as the base plat-
form for developing scalable learning.

379

Figure 6: Comparison of XCS methods for 6-, 11-,
and 20-bits multiplexers.

Figure 7: Scalability of GP and XCS Methods [Note:
In these tests the NOT operator was not included
in the function set].

4.3 Building Blocks of Information
within ADFs

The final rule-base of a typical LCS run on the 6-bit MUX
problem was analysed to extract the most used ADFs, see
Table 3 for the top 10 ADFs out of 208 retained from the ini-
tial 2000 created. If the ADFs behaved as a standard repre-
sentation, then the ADFs of length 1 and ‘don’t care’s would
be expected in rules, e.g. ∼D0, D1, ∼D4 : 0. However, such
rules were not present, with rules containing longer ADFs
preferred. These longer ADFs often contained the address
bits (either D0, D1 or combination). The most common
ADF (rank 1) was the ‘don’t care’ equivalent. The rank 2
ADF is very interesting, see Figure 8 and Table 4 as it acts
as a specialised ‘don’t care’ rule. It is only not true in two
situations; trivially, D0 = D1 = 0 so D3, D5 are unimpor-
tant, importantly, when D3 is 0 and D3 is addressed. It
effectively acts as a mask, indicating that a rule containing
it should not cover this particular situation. This is differ-
ent to many standard representations that can only indicate
which situations they do cover.

LCS claim that transparent learning and cooperation among
rules as a strength of the technique. Considering the rule
shown in Figure 9, cooperation is needed amongst both
ADFs and other rules, e.g. this rule covers the case when

Table 3: Top 10 highly ranked ADFs.
Rank ADF Function Frequency Length

1 D1D1∼| 2121 4
2 D3D0rD1D5|d 770 7
3 D2D1r∼ 516 4
4 D5D1&D0∼| 490 6
5 D1∼D5∼| 469 5
6 D1D2rD0| 455 5
7 D1D3&∼ 436 4
8 D4D1rD1| 435 5
9 D4 317 1

10 D0∼D5D2r| 281 6

D3 = 0 and is addressed. Although still human readable,
the ADF based rules currently require more interpretation
than standard, say ternary encoded, rules.

It is worth considering why the simple ADFs available to
the LCS were not retained, see Table 5. Address bits D0 and
D1 were not used often in isolation, probably due to the need
to combine with other data-bit features to be meaningful.
Considering this insight, D5 was relatively lowly ranked, but
this was likely due to the ‘true’ state being favoured when
matching, i.e. D0 = D1 = 1 = true - addresses D5. The
negation of D0, D1 and D5 probably did not get retained
for similar reasons. Curiously, the system effectively created
D0 twice, see rank 19, 34, highlighting the problem with
GP like encoding in terms of multiple genotypes to a single
phenotype hindering both interpretation and functionality.

Figure 8: An ADF mask for not considering states
when D3 is 0 and D3 is addressed.

Finally, as the address bits function together, would the
system autonomously isolate them? Table 6 shows all be
retained ADFs using just the address bits, which are few
and ranked lowly. Address bits in isolation are meaningless,
so they need to be combined with the data-bits as in the
highly ranked ADFs.

5. DISCUSSION
This work has shown the ability of ADFs to both speed

up and simplify the solutions of the GP technique, which
confirms past results. It also shows that LCS are capable of
functioning with ADFs, as can be seen from Figure 6, and

380

Table 4: An ADF mask for not considering states
when D3 is 0 and D3 is addressed.
D0 D1 D3 D5 D3D0r D1D5| D3D0rD1D5|d
0 0 0 0 1 0 1
0 0 0 1 1 1 0
0 0 1 0 0 0 1
0 0 1 1 0 1 1
0 1 0 0 1 1 0
0 1 0 1 1 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 0 1 1
1 0 1 0 0 0 1
1 0 1 1 0 1 1
1 1 0 0 0 1 1
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 0 1 1

Figure 9: A classifier rule complementing a mask
ADF. Consider that D0=0 and D1=1 to interpret
this rule. [‘&’, ‘d’, ‘|’ and ‘∼’ denote AND, NAND,
OR and NOT operators respecively].

that in both techniques the information contained within
the ADFs is useful to the learning algorithm. However, the
ADFs in LCS did not compact the number of rules. Fur-
thermore, the advantages of subsumption deletion were lost
due to genotypic differences resulting in subsumption not
occurring despite phenotypically similar behaviour.

Evolving one or two ADFs in LCS is unlikely to be ef-
fective compared with GP. GP tree represents a complete
solution, whereas a complete solution in XCS is the popula-
tion of rules. Thus more than one ADF is needed in order
to fit each niche, hence why a population of ADFs was used
in the LCS approaches.

It is noted that XCS is a Michigan LCS (population of
individual rules), where a Pittsburgh style LCS (where the
members of a population are a complete set of rules) may
be more appropriate for the use of ADFs. As the purpose

Table 5: Low length ADFs.
Rank ADF Function Frequency

9 D4 317
27 D3 102
28 D2 100
32 D1 92
34 D0 87
39 D5 78
80 D2∼ 17

158 D3∼ 2
192 D4∼ 1
19 D0∼∼ 129
87 D2∼∼ 12

145 D4∼∼ 3
174 D1∼∼ 1
182 D3∼∼ 1

Table 6: ADFs using address bits.
Rank ADF Function Frequency

13 D0D1&∼ 247
15 D0 216
30 D1D0∼r 96
32 D1 94
59 D0D1| 28
89 D0∼D1∼r 11

149 D0D1d∼ 2
165 D0∼D1| 1
175 D1D0&D0d 1

of this work is to discover building blocks useful across the
problem domain, this was not investigated.

Time comparisons between GP and LCS for the multi-
plexer problem, see Figure 7, were not on a completely like
for like basis. The concept of an iteration and a generation
within the techniques differs. A population in GP consists of
complete solutions, whereas in Michigan LCS the population
is a single solution - neither population size had been opti-
mised. The stopping criteria for LCS was arbitrary, rather
than testing the complete problem set to ensure convergence.
Further, the function set used can greatly decrease the time
taken in GP if it produces more compact trees, e.g. the
inclusion of the NOT operator would significantly reduce
training times. Thus, the results only suggest LCS scales
better in the multiplexer domain.

Utilising ADFs for the matching component of the LCS
removes the implicit linking between the position of a condi-
tion in a rule and the corresponding feature in the problem
pair. Although this could lead to compaction of a rule, it
also places additional pressure on subsumption deletion as
the reordering of the same conditions needs to be taken into
account. The importance of the address bits and explicit
links to the data bits were observed in the discovered rules.

Static, i.e. not evolved during training, ADFs in the LCS
approaches were a manageable initial setup, which facili-
tated inspection of building blocks throughout learning in
order to determine individual ADF adoption, i.e. persever-
ance of an ADF and the utility of an ADF as measured by
the fitness of the rules in which it occurs. The next step is

381

to evolve the ADFs based on their utility or abstract them
based on the conditions within a standard LCS.

6. CONCLUSIONS
The main objective of this work, which was to introduce

ADFs in LCS, was achieved with interesting results. ADFs
that linked the address to data bits were preferred over
simpler representations, capturing important information.
ADFs in LCS can autonomously determine which situations
their associated rules cover and uniquely, do not cover.

This initial investigation of ADFs in LCS shows that the
multiple genotypes to a phenotype issue in feature rich en-
codings disables the subsumption deletion function to the
detriment of stable performance close to the optimum per-
formance levels. The additional methods and increased search
space leads to much longer training times. This is compen-
sated by the ADFs containing useful knowledge, such as the
importance of the address bits in the multiplexer problem,
in a compact format.

An additional objective of this work was to compare the
performance scaling using a common GPU platform (CUDA)
for both GP and LCS. The introduction of ADFs in GP, on
the GPU platform, improves the speed of performance for
GP, but is detrimental to the speed of XCS. The results sug-
gest that the LCS technique exhibits better scaling as the
complexity in the domain increases. This suggests LCS as
the base platform for developing scalable learning.

7. FUTUREWORK
Currently, GP is limited in the number of ADFs available

to it and relies upon evolution to determine better func-
tionality, whilst LCS has more potentially good ADFs avail-
able, but has no evolution. A parallel evolving population
of ADFs is needed for both techniques.

The next stage is to introduce either algorithmic or nu-
merical simplification [6] into ADFs for LCS, in order to
introduce subsumption deletion. This may result in switch-
ing to a supervised learning LCS paradigm as simplification
often requires a complete training set of data instead of a
single instance.

Rather than evolving ADFs from a random seed, the use of
evolution defined functions (EDFs) [2] will be tested where
the current solutions are interrogated to determine common
building blocks of information that can be extracted and
introduced into the EDF population.

Ultimately, the identified fit DFs (either ADF or EDF)
from a simple problem in a domain (e.g. 6-bit multiplexer)
will be used to seed the DFs in a more complex problem in
the same problem domain (e.g. 11-bit multiplexer) and so
forth. By utilising this ‘stepping-stone’ approach it is hoped
that eventually a problem will be solved in the domain (e.g.
1034-bit multiplexer), which had not previously been solved
using the base techniques.

It is anticipated that multiple populations of DFs from
different problem domains will need to be leveraged in order
to assist in general problem solving.

8. REFERENCES
[1] NVIDIA CUDA C Programming Guide. NVIDIA

Corporation, 2010.

[2] M. Ahluwalia and L. Bull. Coevolving Functions in
Genetic Programming. Journal of Systems

Architecture, pages 573–585, 2001.

[3] M. V. Butz. Rule-based Evolutionary Online Learning

Systems: A Principled Approach to LCS Analysis and

Design. Springer Verlag, Berlin Heidelberg, 2006.

[4] M. Franco, N. Kransnogor, and J. Bacardit. Speeding
Up the Evaluation of Evolutionary Learning Systems
using GPGPUs. In GECCO ’10: Proceedings of the

12th annual conference companion on Genetic and

evolutionary computation conference, pages
1039–1046. ACM, 2010.

[5] I. Charalambos and W. N. Browne. Investigating
Scaling of an Abstracted LCS Utilising Ternary and
S-Expression Alphabets. In IWLCS 2007, 10th

International Workshop on Learning Classifier

Systems, London, UK, July 7-11. ACM, 2007.

[6] D. Kinzett, M. Johnston, and M. Zhang. Numerical
Simplification for Bloat Control and Analysis of
Building Blocks in Genetic Programming.
Evolutionary Intelligence, 2(4):151–168, 2009.

[7] J. Koza. Genetic Programming II: Automatic

Discovery of Reusable Programs. MIT Press, 1994.

[8] W. B. Langdon. A Many Threaded CUDA Interpreter
for Genetic Programming. In EuroGP-2010: LNCS,
pages 146–158. Springer, 2010.

[9] P. Lanzi and D. Loiacono. Speeding Up Matching in
Learning Classifier Systems Using CUDA. pages 1–20.
Springer-Verlag, 2010.

[10] P. L. Lanzi and A. Perrucci. Extending the
Representation of Classifier Conditions Part II: From
Messy Coding to S-Expressions. In W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of

the Genetic and Evolutionary Computation

Conference, volume 1, pages 345–352, Orlando,
Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[11] A. Orriols-Puig and E. Bernadó-Mansilla. A Further
Look at UCS Classifier System. In Proceedings of the

9th International Workshop on Learning Classifier

Systems - IWLCS2006. Springer - to appear, 2006.

[12] J. D. Owens and D. Luebke. A Survey of
General-Purpose Computation on Graphics Hardware.
Computer Graphics forum, 26(1):80–113, 2007.

[13] D. Robilliard and V. Marion. Genetic Programming
on Graphics Processing Units. In Genetic

Programming and Evolable Machines. Springer, 2009.

[14] S. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

382

