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ABSTRACT
The tremendous computing power of Graphics Processing
Units (GPUs) can be used to accelerate the evolution pro-
cess in Genetic Programming (GP). The automatic gener-
ation of code using the GPU usually follows two different
approaches: compiling each evolved or interpreting mul-
tiple programs. Both approaches, however, have perfor-
mance drawbacks. In this work, we propose a novel approach
where the GPU pseudo-assembly language, PTX (Parallel
Thread Execution), is evolved. Evolving PTX programs is
faster, since the compilation of a PTX program takes or-
ders of magnitude less time than a CUDA program com-
pilation on the CPU, and no interpreter is necessary. An-
other important aspect of our approach is that the evolu-
tion of PTX programs follows the Quantum Inspired Lin-
ear Genetic Programming (QILGP). Our approach, called
QILGP3U (QILGP + GPGPU), enables the evolution on a
single machine in a reasonable time, enhances the quality of
the model with the use of PTX, and for big databases can
be much faster than the CPU implementation.

Categories and Subject Descriptors
I.2.2 [Computing Methodologies]: Artificial Intelligence—
automatic programming, program synthesis

General Terms
Performance
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GPU, CUDA, PTX, quantum-inspired algorithms, genetic
programming
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1. INTRODUCTION
Genetic programming (GP) is a systematic method for au-

tomatically generating computer programs. The essence of
GP is to solve a problem from a high-level statement based
on Darwin’s evolutionary theory to search through a space
of possible computer programs. This evolutionary process,
however, can be very costly when real world problems, like
the ones in [15], are considered. For these problems, millions
of programs need to be evaluated at each GP complete run.
In order to tackle this problem, past work has focused on ap-
plying high performance computation techniques to speedup
the GP task [1, 26]. GP is inherently parallel in that each
candidate program can be evaluated independently from the
others. Therefore, the parallelism derived from many can-
didate solutions being evaluated at the same time has been
exploited in different solutions for multiprocessor machines
or clusters of computers [23, 28, 2].

Recently, Graphics Processing Units (GPUs) offer a huge
computing power that is frequently an order of magnitude
larger than the most modern multicore CPUs. Driven by
ever increasing requirements from the video game indus-
try, modern GPUs are very powerful and flexible processors,
while their price remains in the range of mass consumer mar-
ket. The NVIDIA Compute Unified Device Architecture
(CUDA), that specifies extensions to the C programming
language for writing program targeting to the GPUs, en-
hances the viability of GPUs as a general-purpose computing
platform. CUDA provided a straightforward programming
model and language, and GPUs are considered attractive
platforms for high performance GP.

Previously, the parallelism of GPUs has been exploited
for running GP using two different approaches: (i) compil-
ing each evolved program [4, 11, 12, 17], or (ii) interpreting
multiple programs [16, 18, 25, 29]. In the compiling evolved
programs approach, after the program is compiled to run
on the GPU, all the fitness cases can be executed in paral-
lel. In the interpreting multiple programs approach, multi-
ple individuals can be evaluated simultaneously, by the im-
plementation of a GPU interpreter. Both approaches have
performance drawbacks. In the compiling evolved programs
approach, before any evaluation can occur, the program has
to be compiled on the CPU. The compilation time can gen-
erate a huge overhead. For real world problems, where the
compilation of a CUDA program would take a few seconds,
the evaluation of millions of individuals could be unfeasible.
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In the interpreting multiple programs approach, although
the interpreter is able to execute the evolved programs in
parallel, typically interpreted code runs much slower than
optimized compiler generated machine code.

We propose here a different approach to deal with these
performance problems in the code generation/execution. In
our approach, we propose the evolution of PTX (Parallel
Thread Execution) programs. PTX is a pseudo-assembly
language used in CUDA environment. The nvcc compiler
translates code written in CUDA into PTX and than into
a code that runs on the GPU, all on the CPU side. Evolv-
ing PTX programs is faster than using the compilation ap-
proach, since the compilation of a PTX program takes around
100 times less time than a CUDA program compilation on
the CPU. Also, no interpreter is necessary, since the com-
pilation of a PTX code results in a native code program
which can be directly executed by the GPU. Another im-
portant advantage of evolving PTX programs is that we can
focus on ways to parallelizing genetic programming that dis-
tribute the computational effort needed to compute fitness.
In [14], Koza proposes three levels of parallelization: fitness
case, individuals and independent runs. In the level of fit-
ness case, all the fitness cases are executed in parallel with
only one individual being evaluated at a time. In the level
of individuals, multiple individuals are evaluated in parallel.
The level of independent runs, several evolutions will occur
at the same time.

Besides the problem of code generation/execution and the
parallelization methodology, we also address here the evolu-
tion process itself. We employ linear GP, since it is best
suited to evolve programs in imperative languages like C or
assembly [3]. The number of instructions can be fixed or
variable, which means that different individuals may have
different sizes [24]. Our evolution of PTX programs, how-
ever, follows the Quantum Inspired Linear Genetic Program-
ming (QILGP), recently proposed in [7]. QILGP evolves x86
machine code programs using a quantum-inspired approach.

The Quantum-Inspired Evolutionary Algorithms (QIEAs)
[20] is one of the most recent advances in Evolutionary Com-
putation. It is motivated by quantum computing, which de-
scribes computational processes that are based on making
direct use of certain quantum mechanics phenomena (e.g.
superposition of states) to perform data operations. These
phenomena allow to construct computers that, in theory,
comply with new and more permissive laws of computa-
tional complexity [27]. In a quantum computer, the basic
unit of information, named qubit, can take the states |0〉,
|1〉 or a superposition of both states. When observed, the
qubit is brought to the classical level and the observed state
is the value 0 or 1. This superposition of states gives quan-
tum computers an exceptional degree of parallelism that, if
properly exploited, allows them to perform some tasks that
would be unfeasible for classical computers. In other words,
QIEAs take advantage of quantum mechanics paradigms in
order to improve the performance of computer algorithms.

There are some examples of successful QIEAs in the liter-
ature. The evolutionary algorithm using binary representa-
tion, originally proposed in [10], is one of them. This model
uses a special representation which simulates a chromosome
consisting of qubits, instead of a conventional binary rep-
resentation. QIEA was also used in [13] in multiobjective
combinatorial optimization problems with results superior
to conventional genetic algorithms in terms of convergence

time and quality of solutions. The evolutionary algorithm
for numerical optimization proposed in [5] is another exam-
ple of a QIEA, which is based on the principle of multiple
universes of quantum physics. This QIEA is represented
by real numbers and has a smaller convergence time for
benchmark problems compared to conventional algorithms
in [6]. QILGP uses QIEA to evolve programs and shows
in [8] better performance for some symbolic regression and
binary classification problems when compared to the refer-
ence model, AIMGP (Automatic Induction of Machine Code
by Genetic Programming) [21], which is the most success-
ful model of classical Linear GP in the evolution of machine
code programs.

The approach we propose here for using GPUs to ac-
celerate genetic programming is called QILGP3U (QILGP
+ GPGPU). The contributions of QILGP3U are twofold.
First, it evolves assembly programs for GPUs, more specif-
ically PTX programs for NVIDIA CUDA GPUs. Second it
employs QILGP for evolving the PTX programs. Our ap-
proach uses PTX instead of machine code instructions, en-
abling a more flexible set of instructions. Our results show
that the quality of the model varies depending on the in-
structions set used and for large regression data it can also
be faster.

The rest of this paper is organized as follows. In Section 2
the Quantum Inspired Linear Genetic Programming is ex-
plained. The CUDA architecture and its compilation stages
are explained in Section 3. Section 4 presents QILGP3U, our
quantum-inspired GPU GP model. The experimental setup
and results are shown in Section 5. Finally, conclusions and
future work are presented in Section 6.

2. QUANTUM INSPIRED LINEAR
GENETIC PROGRAMMING

Quantum Inspired Linear Genetic Programming (QILGP)
is based on the following entities: the “quantum individual”
chromosome, which represents the superposition of all pos-
sible programs for the defined search space, is observed to
generate the “classical individual” chromosome, from which
the machine code program is finally generated. That is,
the classical individual chromosome is the internal repre-
sentation of a machine code program. The chromosome of
classical individual (CI) represents the functions by a “func-
tion token” (FT), which may take integer values from 0 to
(f − 1), in order to uniquely represent each of f QILGP
functions. Floating Point Unit (FPU) instructions have only
one or no argument. In other words, all the set functions
have only one terminal, which is represented by a“token ter-
minal” (TT). For a function which has no terminal, its cor-
responding terminal token value is ignored by model. Such a
chromosome can be represented by a structure with (L× 2)
tokens, where: L is the maximum program length (in num-
ber of instructions). The execution order of the program is
sequential from first to last instruction. In turn, each in-
struction is defined as a “gene”. Although this chromosome
is fixed-length, the effective program that it represents has
variable length. This variation is obtained by adding the
NOP instruction in the function set. In turn, the process of
code generation ignores any gene in which a NOP instruction
is present, i.e., any gene whose value of its function token is
zero is ignored.
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2.1 Quantum Individuals
QILGP is inspired by multilevel quantum systems [19].

Therefore, the basic information unit adopted by QILGP
is the qudit. This information can be described by a state
vector in a quantum mechanical system of d levels, which
equates to a d-dimensional vector space, where d is the num-
ber of states in which the qudit can be measured in. That
is, d represents the cardinality of the token that will have its
value determined by the observation of its respective qudit.
The state of a qudit is a linear superposition of d states and
may be represented by Equation 1:

|ψ〉 =
d−1∑
i=0

αi |i〉 , (1)

where the |αi|2 value represents the probability p that qudit
is found in state i when observed. The unitary normalization
of this state guarantees:

∑d−1
i=0 |αi|2 = 1.

The chromosome of a quantum individual is represented
by a list of structures named “quantum genes”. A quantum
gene is composed by a function qudit (FQ), which represents
the superposition of all functions predefined by the function
set. It also has two terminals qudits (TQ), since functions
can use two different types of terminals. One of the terminal
qudits represents the FPU registers (TQReg) and the other
one represents memory locations (TQMem). These registers
and memory locations belong to a predefined terminal set.
For example, the instruction FADD ST(0), ST(i) uses a ter-
minal qudit that represents the superposition of the indexes
i of registers ST(i), while terminal qudit for the instruction
FADD m represents the superposition of memory locationsm.
Since each quantum gene is observed to generate a classical
individual gene (i.e. a complete instruction), both quantum
(QI) and classical individuals (CI) have the same length.

Figure 1 illustrates the creating process of a gene by the
observation of a quantum gene from an example based on
hypothetical case with “7” being the function token of FMUL
m and the inputs being represented by an input vector I, as
exemplied by Equation 2.

I = (V [0], V [1], 1, 2, 3), (2)

where V [0] and V [1] contain the two input values of a prob-
lem, and where 1, 2 and 3 are the values of three predefined
constants. This process can be explained by three basic
steps, indicated by numbered circles in figure 1, as follows.

1. The function qudit (FQ) is observed and the resulting
value (e.g. 7) is assigned to the function token (FT)
of this gene.

2. The function token value determines the terminal qudit
to be observed, since each instruction requires a differ-
ent type of terminal amongst two: register or memory.

3. The terminal qudit (TQ) determined by the function
token value is observed and the resulting value (e.g. 1)
is assigned to the terminal token (TT) of this gene.

So in this example, the observed instruction is FMUL V[1],
since “7” is the function token value for this instruction and
“1” is the terminal token value that represents V [1] in input
vector I defined in (2). That is, if a terminal token is for
an instruction whose argument is a memory content, the
terminal token value indicates the input vector position to
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Figure 1: Creation of a gene by the observation of
a quantum gene. Function and terminal qudits genes
are expressed in terms of its probabilities p.

be used as its argument. Therefore, in this case, the terminal
token values from “0” to “4” indicates that the argument is
V [0], V [1], 1, 2 or 3, respectively. However, if the terminal
token is for an instruction whose argument is the contents of
a FPU register, the terminal token value directly indicates
which of the eight registers the argument is. Only the first
four registers are used in this example: ST (0) to ST (3).

2.2 Quantum Operator
The quantum operator proposed in [7] acts directly on a

probability pi of a qudit, satisfying the normalization condi-
tion:

∑d−1
i=0 |αi|2 = 1, where d is the qudit cardinality and

|αi|2 = pi. Thus, this operator, here named “P operator”,
represents the functionality of a quantum gate, performing
rotations in a vector which represents a state |ψ〉 of a qudit
in a d-dimensional vector space.

This operator works in two basic steps. First, it increases
a given probability of a qudit, as follows:

pi ← pi + s(1− pi), (3)

where s is a parameter named “step size”, which can assume
any real value between 0 and 1. The second step is to adjust
the values of all the probabilities of this qudit to satisfy the
normalization condition. Therefore, P operator modifies the
state of qudit increasing the value of its probability pi by a
quantity which, in turn, is directly proportional to the value
of step size s.

On the asymptotic behavior of pi, by equation 3, we can
note that a probability never reaches the unit value. This is
an important feature of this operator, because it avoids that
a probability take its qudit to collapse, which could cause a
premature convergence of the evolutionary search process,
damaging the model’s performance.

2.3 Overall Structure and Operation
Regarding its structure, QILGP has a hybrid population

which, in turn, is composed of two populations, one quantum
and one classical, both having the same number M of indi-
viduals. It also has M auxiliary classical individuals Cobs

i ,
which result from observations of quantum individuals Qi,
where 1 ≤ i ≤ M . The four basic steps that characterize a
“generation” of QILGP, are described below:

1. Each of M quantum individuals is observed once, re-
sulting in M classical individuals Cobs

i .
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2. The individuals of classical population and the ob-
served individuals are jointly sorted by their evalua-
tions. As a result, the M best individuals from the
2M evaluated ones are kept in classical population, or-
dered from best to worst, from C1 to CM . The other
M classical individuals remain stored and sorted from
best to worst, from Cobs

1 to Cobs
M .

3. The P operator is applied to each individual of quan-
tum population, with reference to their corresponding
individuals in classical population. This step is where
the evolution actually occurs, since every new gener-
ation, application of this operator increases the prob-
ability that quantum individuals’ observations gener-
ate classical individuals more similar to the best ones
found so far.

4. If any individual of classical population evaluated in
the current generation is better than the best classi-
cal individual evaluated so far (compared to previous
generations), a copy is stored in CB , the best classical
individual found by the algorithm so far.

3. CUDA ARCHITECTURE
GPUs are highly parallel, many-core stream-processing

units typically used as accelerators to a host system. It sup-
ports a great number of fine-grain threads, but its cores are
simpler than CPU cores. The connection between the GPU
and the host is done through the PCIe bus. The CUDA
programming model was created for developing applications
for this platform. CUDA an industry C-based development
environment for GPUs, that includes a new parallel pro-
gramming model and an instruction set architecture. CUDA
allows the programmer to define a special C function, called
a kernel, which executes in parallel on the GPU by differ-
ent threads. The programmer organizes these threads into
a hierarchy of grids of thread blocks. A thread block is a set
of concurrent threads that can cooperate among themselves
through barrier synchronization and shared accesses. A grid
is a set of thread blocks that may be executed in parallel.

CUDA’s programming model assumes that the threads
execute on a physically separate device that operates as a
coprocessor to the host running the C program. Both the
host and the device have separate memory spaces, referred to
as host memory and device memory, and the data transfers
between host and device memory are made in the kernels.

3.1 NVCC Compilation
In short, CUDA compilation works as follows: the in-

put program is separated by the CUDA front end (cud-
afe), into C/C++ host code and the GPU device code.
This device code is further translated by the CUDA com-
pilers/assemblers into a intermediate PTX code and then
into CUDA binary (cubin), working as a two stage process.
This binary code is merged into a device code descriptor
which is included by the previously separated host code.
This descriptor will be inspected by the CUDA runtime sys-
tem whenever the device code is invoked by the host pro-
gram, in order to obtain an appropriate load image for the
current GPU [22].

The compilation of CUDA code to a GPU binds its cubin
to one generation of GPUs. Within that generation, it op-
timizes the code to run on that specific GPU. The CUDA

Stage 1 (nvopencc)

Cuda device driverCuda device driver

Execute

Real
architecture

sm

Virtual
architecture

computer

x.cu (device code part)

x.ptx

x.cubin

Stage 2 (ptxas)

n
v
c
c

Figure 2: Just-In-Time compilation schema [22].

Just-in-time compilation (JIT) postpones the second com-
pilation stage until application runtime, at which the target
GPU is exactly known (Figure 2). JIT compilation embraces
a larger coverage of different GPUs and enables users to
evolve PTX code directly, running just the stage two of the
compilation.

4. QILGP3U
The approach we propose here is called QILGP3U, and

is based on the quantum inspired evolutionary method of
QILGP, due to its fast convergence and high quality re-
sults [7, 8]. The main difference of QILGP3U and QILGP
is the representation of the individuals and the way they
are evaluated. QILGP3U represents its individuals as PTX
code and evolve a program without the nvcc compilation
overhead. This is made possible through the CUDA JIT
compiler, which loads PTX modules into the GPU in real
time. Thus, QILGP3U can overcome the overhead of inter-
preting the code during the executing, while the compilation
time is not the bottleneck of the application.

QILGP3U explores two different levels of parallelization
by two different implementations. The first one, called fit-
ness parallel, explores the level of fitness cases, evaluating all
patterns (training, validation and test) at once. This par-
allelization requires that a different program is uploaded to
the GPU before each evaluation, which can be costly, due
to the overhead of transferring data from CPU to the GPU.
For small databases, there are fewer patterns than stream
processors. In this scenario, some of the processors are idle.
This problem will become worse as the number of stream
processors increases with new GPU generations. Unfortu-
nately, a large number of classic benchmark GP problems
fit into this category. However, it is important to notice
that there are other cases that need a huge amount of data
to run, as for example, the analysis of wine quality, commu-
nities or crime, available in [9].

In order to overcome this idleness, our second implemen-
tation explores the parallelism, not only in the level of fitness
cases, but also in the level of individuals. This enables the
algorithm to evaluate an entire population of programs at
once. The common approach so far for evaluating a pop-
ulation of programs in parallel is to implement some form
of interpreter on the GPU [16, 18], but the interpreter ex-
ecutes the evolved programs in a pseudo-parallel manner,
which will be slower than the GPU code, since it introduces
a lot of code divergence. As the cost of JIT is lower than the
cost of the nvcc compiler, our implementation creates a code
where each individual is contained in a thread block. This
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Table 1: Functional description of the instructions
and their corresponding set.

Instruction Description A FS

NOP No operation - 1, 2

add.f32 R0, R0, Xj R(0)← R(0)+X(j) j 1, 2

add.f32 R0, R0, Ri R(0)← R(0)+R(i) i 1, 2

add.f32 Ri, Ri, R0 R(i)← R(i) +R(0) i 1, 2

sub.f32 R0, R0, Xj R(0)← R(0)−X(j) j 1, 2

sub.f32 R0, R0, Ri R(0)← R(0)−R(i) i 1, 2

sub.f32 Ri, Ri, R0 R(i)← R(i)−R(0) i 1, 2

mul.f32 R0, R0, Xj R(0)← R(0)×X(j) j 1, 2

mul.f32 R0, R0, Ri R(0)← R(0)×R(i) i 1, 2

mul.f32 Ri, Ri, R0 R(i)← R(i)×R(0) i 1, 2

div.full.f32 R0, R0, Xj R(0)← R(0)÷X(j) j 1, 2

div.full.f32 R0, R0, Ri R(0)← R(0)÷R(i) i 1, 2

div.full.f32 Ri, Ri, R0 R(i)← R(i)÷R(0) i 1, 2

exchange R0, Ri R(0) � R(i) (swap) i 1, 2

abs.f32 R0, R0 R(0)← |R(0)| - 1

sqrt.approx.f32 R0, R0 R(0)←√
R(0) - 1

sin.approx.f32 R0, R0 R(0)← sinR(0) - 1

cos.approx.f32 R0, R0 R(0)← cosR(0) - 1

abs.f32 Ri, Ri R(i)← |R(i)| i 2

sqrt.approx.f32 Ri, Ri R(i)←√
R(i) i 2

sin.approx.f32 Ri, Ri R(i)← sinR(i) i 2

cos.approx.f32 Ri, Ri R(i)← cosR(i) i 2

guarantees that there will be no divergence of code when
evaluating the entire population.

4.1 Target Platform
QILGP3U uses PTX code for addition, subtraction, mul-

tiplication, division, data transfer, trigonometric and arith-
metic instructions as the function set. The model uses some
instructions of FPU, which can work with inputs and con-
stants registers (X) and eight auxiliary FPU registers (Ri |
i ∈ [0 .. 7]). In order to make a fair comparison with the
QILGP model, two instructions sets were used, the first one
(FS1) contains the exact same instructions of QILGP, un-
der using the ability of some instructions; the second one
(FS2) allows that abs, sqrt and trigonometric functions
have a register argument. As PTX does not contain the
exchange (FXCH ST(i)) instruction, a sequence of mov.f32

and an auxiliary register (R8) were used to create a similar
instruction. Note that all instructions in this set have only
one or no argument. Table 1 shows these instructions, their
operation, the argument (A) of each instruction (if any) and
the function set to which they belong (FS1 or FS2).

A PTX code program evolved by QILGP3U represents a
solution. This program reads the input data from global
memory, which are composed by the input variables of the
problem and by some optional constants supplied by the
user, e.g. vector 2. Finally, the result is stored on the global
memory, in order to be read by the main CPU thread.

4.2 Evaluation of a Classical Individual
Each program evolved by QILGP3U, is a PTX code pro-

gram consisting of three segments: header, body and footer.
The header and footer are not affected by the evolutionary
process. These segments are described as:

• Header – Loads the evaluation patterns from global
memory to registers on the GPU and initializes its
eight registers with zero.

• Body – Is the evolved PTX code itself.

• Footer – Transfers R0 contents to global memory, since
this is the default output of evolved programs. Then
executes the exit instruction to terminate the program
and return to the evolutionary algorithm main flow.

The evaluation process treats the problems caused by in-
structions such as div.full.f32 incurred in dividing by
zero or instructions sqrt.approx.f32 incurred in calculat-
ing a negative number square root, which directly affect the
value resulting from the execution of an evolved program.
In both cases, the value attributed as result of such fitness
case is zero (Ri ← 0). This is the same approach adopted
by QILGP, which promotes neutrality when comparing the
results of the models.

In the population parallel implementation, the PTX code
is only created at each generation. Its body is slightly differ-
ent from the fitness parallel implementation because it has
all the individuals in just one kernel, separated by blocks.
This requires some conditionals commands to evaluate which
block is running in order to locate different individuals. The
best individual is stored on the CPU side and, at the end of
the evolution; a body with only the best individual (without
block conditionals) is presented to the user.

5. RESULTS
For the evaluation of QILGP3U, we used a well-known

benchmark for regression problems with real attributes named
“Mexican Hat” [3]. This benchmark is represented by a two-
dimensional function given by equation 4, as follows:

f(x, y) =

(
1− x2

4
− y2

4

)
× e(−x2−y2)/8. (4)

Its surface is shown in Figure 3. GP has the task of recon-
structing such surface from a given set of points.
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Figure 3: Mexican hat surface function.

The x and y variables are uniformly sampled in the range
[−4, 4] to generate the training, validation and testing data
sets. The fitness value of an individual is its mean absolute
error (MAE) over the training cases, as given by equation 5:

MAE =
1

n

n∑
i=1

|ti − V [0]i| (5)

where ti is the target value for the i case and V [0]i is the
individual’s output value for that same case.

403



The parameter settings used for all experimental tests are
shown in table 2. The total number of runs for each model
was 10. Each run consists of a full evolution of the algorithm.

Table 2: Parameter settings of all models.

Parameter Setting
Number of generations 400,000
Population size 6
NOP initial probability (α0,0) 0.9
Step size (s) 0.004
Maximum program length 128
Function set (see Table 1)
Set of constants {1, 2, 3, 4, 5, 6, 7, 8, 9}

The hardware used for the experiments was a computer
with an AMD Phenom II X4 965 processor (with 128Kb
of L1 cache per core – 64KB for instruction and 64KB for
data), running at 3 GHz, 16 GB of RAM and a nVidia Tesla
C1060 GPU. This GPU has 240 processing elements (at 1.3
GHz) and 4 GB of RAM with a memory bandwidth of 102
GB/s through a 512-bit data bus.

5.1 Parallel Implementations Analysis
First, we evaluated the two parallel implementations: fit-

ness case parallel and population parallel. To do so, we
varied the number of code lines in a randomly generated
PTX program from 1 to 128 (our maximum program length).
Each of these programs was executed in both implementa-
tions, considering that for each 6 (our population size) exe-
cutions of the fitness case, one execution of the population
parallel with the same 6 programs was run. All programs
executions used the same training patterns, with 256 cases
sampled from equation 4 in a 16×16 uniform grid. An aver-
age of 1000 executions was used for the analysis.

In this experiment, we observed that the time spent on ex-
ecuting the possible solutions for the problem corresponds
to less than 1% of the total evaluation time. Therefore, the
time spent on compiling the solutions accounts for almost
all the evaluation time. Figure 4 shows the difference in the
PTX compilation time for the two parallel implementations.
The curve shows the speedup of the population parallel com-
pilation time over the fitness parallel compilation time, as
a function of the number of code lines. In this graph, one
can observe that, for small programs, the population paral-
lel implementation compiles more than 2 times faster than
the fitness parallel implementation. But the speedup ob-
tained by the population parallel compilation decreases as
the number of code lines per program increases. This occurs
because for smaller programs, the header and footer of the
program represent a large percentage of the total compila-
tion cost. As the problem size increases, the influence of the
header and footer on the PTX compilation decreases.

Although the execution time of the solutions obtained are
negligible when compared to the compilation time, the exe-
cution times obtained by the population parallel implemen-
tation were about 4.63 times faster than the execution times
for the fitness parallel implementation.

Due to the better performance results of the population
parallel implementation over the fitness parallel implemen-
tation, the next experiments were done using only the pop-
ulation parallel implementation. Following, we analyze two
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Figure 4: Speedup of the compilation time for pop-
ulation parallel implementation over the fitness par-
allel implementation.

different aspects of this implementation: the convergence
(by inspecting the evolutionary graph of each model), and
the performance (by varying the problem size and measuring
their execution time).

5.2 Convergence Analysis
One can consider that the algorithm converges when the

fitness of the best individuals stop improving significantly.
To evaluate it, 289 training patterns were sampled from
equation 4 in a 17 × 17 uniformly distributed grid, while
the validation and testing data sets contains 256 samples in
a 16× 16 grid.

The two different function sets (FS1 and FS2), previously
described in section 4, were used to generate an evolutionary
graph of QILGP3U. This graph was built using the average
fitness of 10 runs. FS1 is just a literal translation of CPU
operations to GPU operations. However, a GPU provides
more instruction flexibility that has to be explored. For
example, in a GPU it is possible to perform some operations
like sine, cosine and modulus using any register, while in a
CPU it is necessary to move data to register zero before
performing such operations. So in a CPU some extra data
exchange operations is needed. FS2 has the objective of
investigating the effect of GPU instructions flexibility. The
need for extra exchange operations is eliminated, but the
search space is increased.

Figure 5 shows the evolution of each QILGP3U function
set as a function of evaluated individuals. One can observe
that using the FS1 (QILGP-FS1), the GP converges faster
than with FS2 (QILGP-FS2), and then remains almost con-
stant at about 1.5 million individuals. Moreover, the FS1
final result has a slightly better MAE value than FS2. In
spite of FS2 allowing greater flexibility of code, it increases
the search space, hindering the evolution of the algorithm.
These simple modifications degraded the convergence re-
sults, leading to a higher MAE.

Table 3 shows the best individuals average and standard
deviation (σ) for training, validation and test data set of
each model. The average of the best individuals of QILGP3U-
FS1 is better than the other function set for all data sets,
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Figure 5: Evolutionary graphs of both function sets.

being 1.4 times better than QILGP3-FS2. The standard de-
viations of all the cases are relatively low for the number of
runs used.

Table 3: Mean Absolute Errors for QILGP3U.

FS1 FS2
Training Average 0.0963 0.1070

σ 0.0218 0.0113
Validation Average 0.1039 0.1114

σ 0.0254 0.0230
Test Average 0.1104 0.1152

σ 0.0304 0.0292

5.3 Performance Analysis
In this section we are interested in the total execution time

cost of the applications as function of the fitness case size.
The execution times of the experiments related to QILGP
and QILGP3U models were measured running 10 complete
evolution runs, with different training sets. Each training
pattern has three float numbers (x, y and f(x, y)). The
training data set was created according to its sample grid,
which varied from 16× 16 (3KB) to 256× 256 (768KB). In
these results, only the best QILGP3U instruction set was
analyzed (function set 1).

The execution time results are presented in Figure 6, where
the total execution time is shown as a function of the total
number of input samples. For small size problems, QILGP3U
is slower than QILGP. However, as the problem size in-
creases, QILGP3U becomes much faster than QILGP. If we
take a closer look, we can see that the execution of QILGP3U
becomes faster when the fitness cases gets bigger than 64KB,
which is the L1 data cache size for each core of the proces-
sor used in these experiments. We can conclude that this
performance gain is not just because of the large number
of stream processors on the GPU, but also because of the
cache behavior on the CPU for larger datasets.

Langdon and Harman demonstrated in [17] that it is pos-
sible to evolve a parallel GPU program or a CUDA Kernel.
However, they showed that there are still many challenges
in evolving GPU programs. In [12], the compilation of
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Figure 6: Execution time for each model.

CUDA code was done using nvcc and took a long time, they
proposed the use of a computer cluster to reduce the compi-
lation overhead. In this paper, we are interested in investi-
gating the possibility of using PTX code instead. When pro-
filing the GPU implementation, we observed that more than
90% of QILGP3U total execution time is due to the stage
2 of JIT compilation (Figure 2). This bottleneck can only
be eliminated by evolving the cubin code directly, which is
very hard, because there is no official documentation about
its instructions.

6. CONCLUSIONS
In this work, we propose a new approach to the paral-

lelization of GP on GPUs. We focus on exploring the power
of the GPU to parallelize the evaluations, and on reduc-
ing the overheads of traditional evolution approaches based
on the GPU. Our approach, called QILGP3U, is based on
the QILGP algorithm, a stochastic algorithm which evolves
programs by using linear chromosomes. Another important
aspect is that we evolved PTX code, instead of evolving
CUDA code, enabling this way a faster compilation.

QILGP3U explores two different leves of paralellization:
fitness parallel and population parallel. Our results show
that the population parallel scheme obtained better perfor-
mance over the fitness case parallel. In terms of the accuracy
of our approach, QILGP3U is as accurate as the QILGP
model. Another interesting point is that, even though the
first stage of the compilation is not executed, the JIT stage
still takes a expressive time to generate the cubin executable,
and, at each generation, it is responsible for more than 99%
of the evaluation time. We also observed that by chang-
ing the instruction set, to enable more flexibility in the final
program, the evolution took more time, and converged to
a worst solution. This occurs due to the increase of the
search space. Finally, in terms of the increase in the total
execution time as a function of the training set size, while
the CPU implementation increases exponentially, the GPU
implementation maintains constant.

As future work, we propose the evolution of the GPU ma-
chine code, (cubin), to generate faster codes. Cubin is an
architecture-specific code, and the use of this binary code
should be investigated in the QILGP3U model. Besides,
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both the PTX and cubin code evolution enables the evolu-
tion of parallel code. This can be done by inserting some
thread control instructions on the instruction set. Another
important acceleration can be obtained through the com-
plete implementation of the QILGP code into the GPU,
and not only the evaluation of individuals. The quantum
operator could be applied independently at each gene, and
the observation process of classical individuals could benefit
from aspects of this implementation.
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