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ABSTRACT 
In this paper, we use the problem of solving Sudoku puzzles to 
demonstrate the possibility of achieving practical processing time 
through the use of many-core processors for parallel processing in 
the application of genetic computation. To increase accuracy, we 
propose a genetic operation that takes building-block linkage into 
account. As a parallel processing model for higher performance, 
we use a multiple-population coarse-grained GA model to counter 
initial value dependence under the condition of a limited number 
of individuals. The genetic manipulation is also accelerated by the 
parallel processing of threads. In an evaluation using even very 
difficult problems, we show that execution times of several tens of 
seconds and several seconds can be obtained by parallel 
processing with the Intel Corei7 and NVIDIA GTX460, 
respectively, and that a correct solution rate of 100% can be 
achieved in either case.   

Categories and Subject Descriptors 
D.0 [Computer Applications]: General 

General Terms 
Algorithms, Performance, Design, Experimentation, Verification. 

Keywords 
Genetic Algorithms, Parallel Processing, Sudoku Puzzles, 
Graphics Processing Unit. 

1. INTRODUCTION 
Research on the implementation of genetic computing methods on 
massively parallel computing systems to attain faster processing 
[1-5] has been going on since about 1990, but it has not come into 
widespread use. On the other hand, multi-core processors, 
graphics processing units (GPU) and other such many-core 
processors have been coming into wide use in ordinary personal 
computers in recent years. The features of many-core processors 
include suitability for small and medium scale parallelization of 
from several to several hundreds of nodes, and low-cost compared 
to massively parallel computing systems. This environment has 

stimulated research on parallelization of genetic computing on 
many-core processors [6-10]. Current reports, however, focus on 
benchmark tests for genetic computing using typical GPUs. 

The objective of our research is to use an actual and practical 
problem to demonstrate that practical processing time is possible 
through the use of a GPU for parallelization of genetic 
computation, even for problems for which the use of genetic 
computing has not been investigated previously because of the 
processing time problem. 

As the first step towards that objective, we take the problem 
solving Sudoku puzzles [11] and investigate acceleration of the 
processing with a GPU. The reasons for this approach are listed 
below. 

(1) Sudoku puzzles are popular throughout the world. 

(2) Assuming a single core processor, the processing time for 
genetic algorithms is much higher than for backtracking 
algorithms [12]. On the other hand, backtracking algorithms pose 
problems for parallelization, whereas genetic computation is 
suitable for parallelization. Therefore, increasing the number of 
GPU cores may make the processing time for genetic algorithms 
equal to or less than that for backtracking algorithms. 

(3) The use of multi-core processors has recently expanded to 
familiar environments like desktop PCs and laptop computers, and 
it has become easy to experiment with parallelization programs on 
multi-core processors through thread programming. GPUs are 
designed for the processing of computer graphics in games. But 
research on General-Purpose computation on Graphics Processing 
Units (GPGPU) has begun, and GPUs can be used to support 
solving a logical game. 

(4) Although the processing time for the backtracking algorithm 
increases exponentially as the puzzle size increases from 9 × 9 to 
16 × 16, the fact that a genetic algorithm is a stochastic search 
algorithm opens up the possibility of reversing the processing 
time ratio. 

High-speed genetic computing by a GPU requires the design of a 
parallel-processing program that is dependent on the number of 
cores and memory capacity in the GPU. This means adjusting the 
degree of parallelization and the amount of processing allocated to 
each task according to GPU specifications. In the case of Corei7, 
however, we focus only on the degree of parallelization afforded 
by the number of cores in a multi-core processor and propose a 
method for speeding up Sudoku problem solving by general-
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purpose thread programming conforming to POSIX specifications 
[13]. 

In this paper, we show the possibility of a large reduction in 
processing time for genetic computation by parallelization using a 
many-core processor. In the following section 2, we show an 
improvement in the accuracy of Sudoku puzzle solution for by 
using a genetic operation that takes building-block linkage into 
account [14]. In section 3, we propose an implementation of a 
parallel genetic algorithm on a GPU. Section 4 describes a 
comparative evaluation of the solution of a difficult Sudoku 
puzzle executed on a CPU and on a many-core processor. Section 
5 presents a discussion and section 6 concludes this paper.   

2. IMPROVED ACCURACY IN SUDOKU 
SOLUTION USING GENETIC OPERATION 
THAT TAKES LINKAGE INTO ACCOUNT 
2.1 Genetic Operations that Takes Linkage 
Into Account 
A number of studies on application of GA to solving Sudoku have 
already been made. On the other hand, there seems to be relatively 
few scientific papers. References [15, 16], for example, defines a 
one-dimensional chromosome that has a total length of 81 integer 
numbers and consists of linked sub-chromosomes for each 3x3 
sub-block of the puzzle, and applies uniform crossover in which 
the crossover positions are limited to the links between sub-blocks. 
References [17, 18] compares the effectiveness for different 
crossover methods, including one-point crossover that limit 
crossover points to links between sub-blocks, two-point crossover, 
crossover in units of row or column, and permutation-oriented 
crossover operation. In these examples, optimum solutions to 
simple puzzles are easily found, but the optimum solutions for 
difficult puzzles in which the starting point has few givens are 
often not obtainable in realistic time. We believe the reason for 
the failure of this design is that the main GA operation, crossover, 
tends to destroy highly fits, schemata (BB) [19]. To avoid that 
problem, we defined 9 × 9 two-dimensional arrays as the GA 
chromosome and proposed a crossover operation [14] that takes 
building-block linkage into account. An example of this crossover 
is shown in Fig. 1. 

 
 

 
Figure 1. An example of the crossover considering the rows or the 
columns that constitute the sub-blocks. 
 

In this figure, we assumed that the highest score of each row or 
column is 9. Therefore, the highest score of each row or column in 
sub-blocks becomes 27. Child 1 inherits the row information from 
parent 1, parent 2, and parent 1 in order from top to bottom. Child 
2 inherits the column information from parent 1, parent 2, and 
parent 2 in order from left to right. Mutations are performed for 
each sub-block. Two numerals within a sub-block that are not 
given in the starting point are selected randomly and their 
positions are swapped. We added a simple local search function in 
which multiple child candidates are generated when mutation 
occurs, and the candidate that has the highest score is selected as 
the child. These experiments use tournament selection. The fitness 
function, Eq. (1), is based on the rule that there can be no more 
than one of any numeral in a row or column. The score is the 
number of different elements in a row (gi) or column (hj), and the 
sum of the row and column scores is the score for the individual. 

      (1)
 

, 
 

Here, | . | indicates the number of different numerals in a particular 
row or column. Therefore, maximum score of the fitness function 
f(x) becomes 162. 

2.2 Sudoku Solution Accuracy by GA 
For the puzzles used to investigate the effectiveness of the genetic 
operations proposed in [14], we selected two puzzles from each 
level of difficulty in the puzzle set from a book [20]: puzzles 1 
and 11 from the easy level, 29 and 27 from the intermediate level, 
and 77 and 106 from the difficult level, for a total of six puzzles. 
We also used the particularly super difficult Sudoku puzzles 
introduced in reference [21]. The experimental parameters are 
population size: 150, number of child candidates/parents: 2, 
crossover rate: 0. 3, mutation rate: 0. 3, and tournament size: 3. 

The relation between the number of givens in the starting point 
and the number of generations required to reach the optimum 
solution is shown in Table 1 and Fig. 2. For the three cases in 
which only mutation is applied (a kind of random search), when 
mutation and the proposed crossover method are applied 
(mut+cross), and when the local search improvement measure is 
applied in addition to mutation and crossover (mut+cross+LS), the 
tests were run 100 times and the averages of the results were 
compared. The termination point for the search was 100,000 
generations. If a solution was not obtained before 100,000 
generations, the result was displayed as 100,000 generations. 
When the search is terminated at 100,000 generations, the 
proportion of obtaining an optimum solution for a difficult puzzle 
was clearly improved by adding the proposed crossover technique 
to the mutation, and improved even further by adding the local 
search function. The mean number of generations until a solution 
is obtained is also reduced. 

In Table 2, the number of times the optimum solution was 
obtained in 100 test runs using the super difficult Sudoku puzzles 
is shown [21]. Without any trial limitation the method was solved 
every time. On the other hand, when using a limit of 100,000 
trials, our method was solved 99 times, 83 times, and 74 times out 
of 100 test runs for three super difficult problems, respectively. 
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On the other hand, Figure 3 shows the relation of the average 
number of generations and dispersion. For puzzles that have the 
same number of initial givens, there is a dependence on the 
locations of the givens, and a large variance is seen in the mean 
number of generations needed to obtain the optimum solution. 
Furthermore, for difficult puzzles that provide few initial givens, 
there were cases in which a solution was not obtained even when 
the search termination point was set to 100,000 generations. The 
reason for that result is considered to be that the search scope for 
the solution to a difficult puzzle is large and there exist many 
high-scored local solutions that are far from the optimum solution. 
Another possibility is that there are puzzles for which the search 
scope is too broad and there is a dependence on the initial values. 
The processing time was still very poor compared to the 
backtracking algorithm. 

 

Table 1. The comparison of how effectively GA finds solutions for the 
Sudoku puzzles with different difficulty ratings.  

 

Table 2. The number of times the optimum solution was obtained in 100 
test runs using super difficult problems. 

Sudoku puzzle SD1 SD2 SD3 

Count 99 83 74 
The numbers represents how many times out of 100 test runs each method 
reached the optimum.  

 

 

Figure 2. Relationship between givens and the average of how many GA 
generations were needed to find the solution. 

 

 
Figure 3. The difficulty order of tested Sudoku. The minimum and 
maximum generations needed to solve each Sudoku from 100 test runs as 
a function of generations needed. 

3. ACCELETING GENETIC COMPUTING 
WITH MANY-CORE ARCHITECTURE 
3.1 System Architecture for Sudoku Solution 
3.1.1  GTX460 and CUDA Programming 
The NVIDIA GeForce GTX460 GPU that we use in this study has 
1 GB global memory and seven streaming multi-processors (SMs), 
and each SM has 48 processors that share a 48-KB high-speed 
memory. The basic CUDA operations are broadly grouped into 
the four classes: (1) Reserving GPU memory, (2) Data transfer 
from CPU to GPU, (3) Parallel execution on the cores of the GPU, 
and (4) Data transfer from the GPU to the CPU. 

CUDA has three units of processing: a thread corresponds to a 
single process, a block is a number of threads, and a number of 
blocks of the same size constitute a grid. In CUDA, a thread array 
of up to three dimensions can be made into a block and a grid can 
include an array of blocks of up to two dimensions. The unit for 
the execute instruction from the host is the grid. All of the threads 
in a grid are executed by the same program, which is called the 
kernel. The CUDA programming model is a kind of multi-thread 
model. Each thread is allocated an element in a data array, and the 
data array serves in the management of the parallel execution of 
those threads. Threads within the same block share the shared 
memory inside the SM, so the number of threads within a block is 
limited to 1024. 

3.1.2 System Architecture for Corei7 
A conceptual diagram of the homogeneous multi-core processor 
architecture and system software targeted by this research is 
shown in Figure 4. Intel, AMD, and other semiconductor 
companies have recently been marketing quad-core products for a 
wide range of computers from PCs to servers. In this research, we 
target a homogeneous multi-core processor that has recently come 
to be used in PCs and attempt to speed-up Sudoku puzzle solving 
on a commonly available system. The OS (Ubuntu 10.04) used in 
our research provides a POSIX thread interface as an application 
programming interface (API) and can execute a multi-thread 
program on a multi-core processor. 
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Figure 4. The system architecture for multi-core processors 

 

3.2 Parallel GA Model and Implementation 
for Many-core Architecture 
3.2.1 Parallel GA model and Implementation for 
GPU Computation 
Figure 5 shows the parallel GA model for GPU computation. 
Because the grid is the unit of execution for instructions from the 
host, we conducted experiments with seven blocks in a grid to 
match the number of SM and with the number of threads in a 
block equal to three times the number of individuals (3×N) for 
parallel processing in units of rows or columns that consist of 
Sudoku region blocks. We allocate the population pools PP and 
WP, and some working pools to the shared memory of each SM. 
Here, PP is the population pool to keep individuals of the current 
population, and WP is a working pool to keep newly generated 
offspring individuals until they are selected to update PP for the 
next generation. 

The procedure of the parallel GA model for GPU computation is 
as follows. 

(1) In the host machine, all individuals are randomly generated 
and then sent to the global memory of the GPU. 

(2) Each SM copies the corresponding individuals from global 
memory to its shared memory, and the generational process is 
repeated until the termination criteria are satisfied. 

(3) Finally, each SM copies the evolved individuals from its 
shared memory to global memory. 

When applying the genetic algorithm to the solution of Sudoku, 
the general procedure is to define an 81-bit one-dimensional 
chromosome that consists of the joined sub-chromosomes of the 
various puzzle regions and then perform crossover with the 
crossover points limited to only the joints between regions. 
Crossover of this type, however, is believed to easily destroy 
building blocks. As one way to solve that problem, we define a 
two-dimensional chromosome, taking building-block linkage into 
account.  Crossover is then performed by assigning a score to each 
row or column, each of which consists of region blocks, 
comparing the scores for the two parent individuals, and then 
passing the row or columns that have the highest scores on to the 
child. 

Generally, local search functions are effective for constraint 
satisfaction problems such as Sudoku. Our objective, on the other 
hand, remains as the solution of Sudoku puzzles in a practical 
time within the framework of genetic computing. Accordingly, we 
added only a simple local search function in which multiple child 
candidates are generated when mutation occurs, and the candidate 
that has the highest score is selected as the child. This is 
equivalent to the selection function in (µ,λ )-ES and is an 
operation in the genetic computing framework. 

 
Figure 5.  Parallel GA model for GPU computation 

 

For efficient execution of CUDA programs, we take the following 
measures. 

3.2.1.1 Implementation that takes measures against 
the initial value dependency problem into account 
From Fig. 3, we can see that when the number of individuals is 
150, the number of generations until the optimum solution is 
found depends on the initial values. If we do not consider 
parallelization, the processing time is considered to be determined 
by the product of the number of individuals and the number of 
generations. Accordingly, from the relation of the proportion of 
correct solutions obtained to the processing time, we set the 
number of individuals to 150 on the basis of preliminary 
experiments. We could conjecture that the effect of parallelization 
using the GPU would be that increasing the number of individuals 
would not greatly affect the processing time. On the other hand, 
increasing the parallelism requires that the data on individuals and 
other data required for genetic computing be stored in the shared 
memory of the SM rather than in the global memory, but the 
shared memory capacity is low and may not hold the data for a 
sufficient number of individuals. Furthermore, the data transfer 
speed between SM in the GPU is more than 100 times slower than 
the communication within SM, so an implementation that requires 
frequent communication between SM is not suitable. Accordingly, 
we adopt an implementation method in which each SM runs the 
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same genetic computation program, changing only the initial 
values of the individual data, etc., and whichever SM finds a 
solution terminates. In other words, the genetic computing 
programs running in the SMs using threads are executed in 
parallel, and the execution of the same program in each SM with 
different initial values is considered to serve as a measure against 
initial value dependency. This can be considered to be SIMD-type 
parallel processing. 

3.2.1.2 Sparing use of high-speed shared memory 
In previous experiments that involved the evaluation of 
benchmark tests implemented on multi-core processors [10], 
tables for random number generation were placed on each core to 
reduce the time required for random number generation. On the 
other hand, the shared memory of the GTX 460 is small, with a 
maximum of 48 KB, so if random number tables are placed in 
each block, the required number of individuals cannot be defined. 
Therefore, the CURAND library function is used instead of the 
random number tables. Random number generation with 
CURAND is slower than using random number tables on each 
core, but it is much faster than generating the random numbers on 
the host and transferring the values to each SM. Furthermore, 
because 8 KB of the 64 KB read-only constant memory can be 
accessed at high-speed as a cache, the initial arrangement of the 
Sudoku puzzle (four bytes (int) × 81 = 324 bytes) is stored in that 
cache memory. The data allocated to the shared memory is as 
follows. 

・ Area for storing individual data: 1 byte (char) × 81 × N × 2 

・ Work area for tournament selection: 4 bytes (int) × N 

・ Work area for crossover: 4 bytes (float) ×N/2 

・ Work area for mutation: 1 byte (char) × 81 × N 

3.2.1.3 Parallel processing in units of sub-
chromosome 
Figure 6 shows an example of the swap mutation within a sub-
block and the thread assignment. For a Sudoku puzzle that 
comprises 3 × 3 region blocks, the genetic manipulation for each 
region block is performed in parallel, so nine threads are allocated 
to the processing for one individual. Because of the limited shared 
memory capacity, however, we assign here three threads to the 
processing for one individual. The processing for crossover, 
mutation or other such purpose for each line or column that 
consists of three region blocks is accelerated by the parallel 
processing of three threads. 

 
Figure 6. An example of the swap mutation within a sub-block and the 
thread assignment. 

3.2.2 Parallel GA Model and Implementation for 
Multi-core Processors 
It can be seen from Figure 3 that the number of generations 
needed to find an optimal solution for the same Sudoku problem 
is highly dispersed. This indicates that a Sudoku solution using 
genetic computations is dependent on the initial value when a 
sufficient number of individuals cannot be set due to insufficient 
memory capacity or other constraints. With this in mind, we 
generate the same number of threads as cores in the target 
processor and propose a method that executes genetic operations 
with each core having a different initial value. We also adopt the 
value of the core that finds a Sudoku solution first.  

The procedure of the parallel GA model at each core processor is 
as follows. 

(1) All individuals are randomly generated. 

(2) The generational process is repeated until the termination 
criteria are satisfied. 

(3) The core that finds a Sudoku solution first cancels the 
operations in the other cores. 

4. EVALUATION EXPERIMENTS 

4.1 Execution platform 
The specifications of the execution platform used in experiments 
for Intel Corei7 and GTX460 are listed in Table 3 and 4 
respectively. The specifications of the GTX 460 GPU used in 
these experiments are listed in Table 5. 
 

Table 3. Multi-core processor execution environment 

CPU Intel Corei7 920  (2.67GHz, 4 cores) 

OS Ubuntu 10.04 

C compiler gcc 4.4.3 (optimization " –O3") 

 
Table 4. GPU execution environment 

CPU Phenom ⅡX4 945 (3 GHz, 4 cores) 

OS Ubuntu 10.04 

C compiler gcc 4.4.3 (optimization " –O3") 

CUDA Toolkit 3.2 RC 

 

Table 5. GTX460 specifications 

Board ELSA GLADIAC GTX 460 

#Core 336 (7 SM x 48 Core/SM) 

Clock 675MHz 

Memory 1 GB (GDDR5 256 bits) 

Shared memory/SM 48 KB 

#Register/SM 32768 

#Thread/SM 1024 
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4.2 Scalability 
The system described here has scalability with respect to the 
number of cores. Increasing the number of cores in an SM is also 
considered to improve robustness against the dependence on 
initial values. For this reason, in the case of Corei7, we varied the 
number of threads to be executed in parallel from 1 to 8 and 
surveyed (1) solution rate, (2) average number of generations until 
the correct solution was obtained, and (3) average execution time. 
The number of cores in the multi-core processor is 4, but since 2 
threads can be executed in parallel in one core by hyper-threading 
technology, we performed the experiment by executing a 
maximum of 8 threads in parallel. On the other hand, in the case 
of GPU, we varied the number of SM ranging from one to seven. 

The results are presented in Tables 6, 7, and 8 for Corei7, and in 
tables 9, 10, and 11 for GTX460. The values shown in the results 
are the averages for 100 experiments that were conducted with 
150 individuals and a cut-off of 100,000 generations. 

 

Table 6. The rate of correct answers, the number of average generations, 
and the average execution time (Intel Corei7: SD1) 

#Threads Count [%] Average Gen. Exec. time 

1 94 32,858 22s 19 
2 100 15,268 13s 87 
4 100 7694 13s 11 
8 100 3527 7s 39 

 
Table 7. The rate of correct answers, the number of average generations, 
and the average execution time (Intel Corei7: SD2) 

#Threads Count [%] Average Gen. Exec. time 

1 82 42,276 28s 41 
2 98 25,580 22s 48 
4 100 13,261 21s 47 
8 100 5,992 12s 12 

 
Table 8. The rate of correct answers, the number of average generations, 
and the average execution time (Intel Corei7: SD3) 

#Threads Count [%] Average Gen. Exec. time 

1 69 60,157 39s 88 
2 93 46,999 40s 43 
4 100 19,982 30s 79 
8 100 8,795 17s 13 

 
Table 9. The rate of correct answers, the number of average generations, 
and the average execution time (GTX460: SD1) 

#SM Count [%] Average Gen. CPU time 

1 62 57,687 16s 728 
2 80 40,820 11s 845 
4 98 19,020 5s 527 
7 100 10,014 2s 906 

 

Table 10. The rate of correct answers, the number of average generations, 
and the average execution time (GTX460: SD2) 

#SM Count [%] Average Gen. CPU time 

1 50 70,067 20s 199 
2 69 58,786 16s 958 
4 93 31,254 9s 260 
7 97 22,142 6s 391 

 
Table 11. The rate of correct answers, the number of average generations, 
and the average execution time (GTX460: SD3) 

#SM Count [%] Average Gen. CPU time 

1 32 82,742 23s 958 
2 59 68,050 19s 722 
4 77 47,811 13s 879 
7 95 30,107 8s 727 

4.3 Experiments on Increasing the Number of 
Individuals 
For a large number of individuals, initial values in a Sudoku 
solution are highly diverse. To investigate the relationship 
between diversity in initial values and the results of a Sudoku 
solution, we varied the number of individuals on Intel Corei7 
from 150 to 400 and surveyed (1) solution rate, (2) average 
number of generations until the correct solution was obtained, (3) 
average execution time, and 4) minimum number of generations. 

The result for SD2 is presented in Table 12. The values shown in 
the results are the averages for 100 experiments. In these 
experiments, we limited the number of threads to 4 and 8 and set 
the search termination point to 100,000 generations. 

 
Table 12. The result on increasing the number of individuals (SD2) 

#Individuals Count [%] Ave. Gen. Exec. Time Best Gen. 

100 100 8,641 11s 63 644 
150 100 5,992 12s 12 243 
200 100 7,115 19s 20 229 
300 100 9,441 38s 29 123 
400 98 15,441 84s 76 86 

 

4.4 Minimum Number of Generations 
To estimate the performance in the case that the initial value 
dependence problem has been solved, we determined the 
minimum numbers of generations and the execution times 
required to solve SD1 through SD3 (Table 13). 

 
Table 13. The minimum numbers of generations and the execution times 
required to solving SD1 through SD3. 

Sudoku Minimum Gen. Exec. time 

SD1 83 25 ms 
SD2 158 47 ms 
SD3 198 76 ms 

412



5. DISCUSSION 
5.1 Scalability and the Dependence on Initial 
Values 
From Table 6 through Table 8, we can see that increasing the 
number of threads reduces the execution time and increases the 
correct solution rate. Furthermore, we can see that the reduction 
rate of the average number of generations and average execution 
time with respect to execution by one thread decreases as the 
number of threads increases. In other words, the problem of initial 
value dependence tends to be eliminated as the number of threads 
is increased for both the processing time and the correct solution 
rate. 

On the other hand, in the case of GPU, from Table 9 through 
Table 11, we can see that increasing the number of SM reduces 
the execution time and increases the correct solution rate. In other 
words, the problem of initial value dependence tends to be 
eliminated as the number of SM is increased for both the 
processing time and the correct solution rate. From Table 13, 
increasing the number of SM or any other means of solving the 
initial value dependence problem makes it fully possible to solve 
super-difficult Sudoku puzzles within one second in a stable 
manner by parallelization of genetic computation using a GPU. 

In other words, we consider that the performance of a multi-core 
processor is scalable in relation to number of threads and that the 
performance of a GPU is scalable in relation to the number of 
SMs. Parallelization using the GTX460 GPU finds solutions faster 
than that using Corei7 multi-core processor, but we consider this 
to be due simply to a difference in number of cores. On the other 
hand, Corei7 exhibits higher solution rates, which we think are 
due to the fact that random numbers in GTX460 are generated 
using the CURAND library function. 

5.2 Setting the Number of Individuals 
Generally, we can consider that the effect of parallelization will 
become large as the number of individuals increases. From Table 
12, in case of the Corei7, increasing the total number of 
individuals increased the number of individuals that came closer 
to the correct Sudoku solution but also increased the number that 
deviated from the correct solution. This is considered to be the 
reason why the average number of generations until the correct 
solution was obtained also increased. Increasing the number of 
individuals also increased the processing time for one generation 
thereby increasing the average execution time until the correct 
solution was obtained. The value of best generations also 
decreased. Accordingly, if the number of cores in the processor 
can be increased and processing performance by parallelization 
increased in future multi-core processors, we can expect 
processing to accelerate to the point where it will be possible to 
derive correct solutions for even super-difficult Sudoku problems 
in less than a few seconds. 

In the processing-acceleration technique by GPU that we have 
been developing in parallel with the above technique, 
programming must take into account upper limits such as task 
parallelization and memory capacity based on the hardware 
specifications of the GPU to be used. There is therefore a limit as 
to how far the number of individuals can be increased to solve the 
problem of initial value dependence. On the other hand, the 
technique introduced in this paper, while inferior to the GPU 
technique in terms of parallelization, enables a parallel program to 

be executed without limitations in number of threads or memory 
capacity by virtue of using general-purpose multi-core processors.  
Looking forward, we believe that accelerating genetic 
computations for solving Sudoku puzzles by a high-parallelization 
system should be effective for either GPUs or multi-core 
processors while solving the problem of initial value dependence 
by increasing the number of individuals. 

On the other hand, in the case of GTX460, the amount of data 
allocated to the shared memory as described in section 3.2.1.2 is 
equal to 249N, so the maximum number of individuals for which 
data can be stored in the 48 KB shared memory is 192. 
Furthermore, considering that 192 is a multiple of the number 
processors within the SM and also a multiple of the CUDA thread 
processing unit, the execution time and the correct solution rates 
for when the number of individuals is set to 192 are presented in 
Table 14. 

 
Table 14. The execution time and the correct solution rates for when the 
number of individuals is set to 192. 

Sudoku Count [%] Average Gen. CPU time 

SD1 100 9072 2s 751 
SD2 100 13,481 4s 530 
SD3 100 22,799 6s 862 

 

Compared with the case in which the number of individuals is set 
to 150, the processing time was reduced by approximately 5% 
while the correct solution rate remained at 100%. For SD2, the 
correct solution rate increased from 97% to 100% and the 
processing time decreased by approximately 29%. For SD3, the 
correct solution rate increased from 90% to 100% and the 
processing time decreased by approximately 21%. From this data, 
we can see that setting the number of individuals to an appropriate 
value for parallel execution of a genetic computing program 
written in C on a GPU accelerates the processing relative to 
processing on a CPU by a factor of 25.5 for the SD1 problem, by 
a factor of 19.1 for SD2, and by a factor of 16.2 for SD3. We can 
also see that a correct solution rate of 100% can be attained, even 
for problems in all three of the super-hard categories. 

It can therefore be seen that super-difficult Sudoku problems can 
be solved in realistic times by the parallelization of genetic 
computing using the Corei7 multi-core processor commonly used 
in desktop PCs or the inexpensive, commercially available 
GTX460 GPU.  

These experiments also show that the GPU can find solutions 
faster than the multi-core processor by making use of a higher 
degree of parallelization. As new GPUs with a higher number of 
SMs and a higher degree of integration come to be developed, we 
can expect even faster execution times. At the same time, the 
GPU suffers from limitations such as the need for programming 
that must consider upper limits in task parallelization and in the 
memory allocated to each task due to hardware constraints. In 
other words, it is more difficult to use a GPU than a multi-core 
processor which can execute programs in parallel without having 
to worry about limitations in number of threads or memory 
capacity. Furthermore, when using a library function such as 
CURAND for random-number generation due to limitations in 
shared-memory capacity within a SM, problems with the cycle 
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length of random numbers generated in this way must be taken 
into account. 

Thus, when trying to decide whether to use a GPU or multi-core 
processor when attempting to accelerate genetic computations by 
parallelization, due consideration must be given to the target 
application problem. 

6. CONCLUSIONS 
We have used the problem of solving Sudoku puzzles to show that 
parallel processing of genetic algorithms in a many-core 
environment can solve difficult problems in practical time. 
Specifically, we implemented parallel genetic computing on the 
NVIDIA GTX 460, a commercially-available GPU, or the 
commercially available Corei7 multi-core processor from Intel. 
Evaluation results showed that execution acceleration factors of 
from 10 to 25 relative to execution of a C program on a CPU are 
attained and a correct solution rate of 100% can be achieved, even 
for super-difficult problems. In short, we showed that the 
parallelization of genetic computing using a multi-core processor 
commonly used in desktop PCs or a GPU that can be purchased at 
low cost can be used to solve problems in realistic times, even in 
the case of problems for which the application of genetic 
algorithms has not been studied in the past because of excessive 
processing times. Future work will use many-core architecture of 
a higher integration scale to challenge problems of a larger scale 
and compare the results with the backtracking algorithm. 

7. ACKNOWLEDGMENTS 
This research is partly supported by the collaborative research 
program 2010, Information Initiative Center, Hokkaido University. 

8. REFERENCES 
[1] V. S. Gordon, V. S. Gordon, D. Whitley, and D. Whitley, 

“Serial and parallel genetic algorithms as function 
optimizers,” in Proc. of the 5th International Conference on 
Genetic Algorithms. Morgan Kaufmann, 1993, pp. 177–183. 

[2] H. Mühlenbein, “Parallel genetic algorithms, population 
genetics and combinatorial optimization,” in Proc. of the 3rd 
International Conference on Genetic Algorithms, 1989, pp. 
416–421. 

[3] H. Mühlenbein, “Evolution in time and space - the parallel 
genetic algorithm,” in Foundations of Genetic Algorithms. 
Morgan Kaufmann, 1991, pp. 316–337. 

[4] R. Shonkwiler, “Parallel genetic algorithm,” in Proc. of the 
5th International Conference on Genetic Algorithms, 1993, 
pp. 199–205. 

[5] E. Cantu-Paz, Efficient and Accurate Parallel Genetic 
Algorithms. Kluwer Academic Publishers, 2000. 

[6] J.-H. Byun, K. Datta, A. Ravindran, A. Mukherjee, and B. 
Joshi,“Performance analysis of coarse-grained parallel 
genetic algorithms on the multi-core sun UltraSPARC T1,” 
in Southeastcon, 2009. SOUTHEASTCON’09. IEEE, March 
2009, pp. 301–306. 

[7] R. Serrano, J. Tapia, O. Montiel, R. Sep´ulveda, and P. Melin, 
“High performance parallel programming of a GA using 

multi-core technology,” in Soft Computing for Hybrid 
Intelligent Systems, 2008, pp. 307–314. 

[8] S. Tsutsui and N. Fujimoto, “Solving quadratic assignment 
problems by genetic algorithms with GPU computation: a 
case study,” in GECCO ’09: Proc. 11th Annual Conference 
Companion on Genetic and Evolutionary Computation 
Conference, 2009, pp. 2523–2530. 

[9] Asim Munawar, Mohamed Wahib, Masaharu Munetomo, 
Kiyoshi Akama. Theoretical and Empirical Analysis of a 
GPU Based Parallel Bayesian Optimization Algorithm. In 
Proceedings of the International Conference on Parallel and 
Distributed Computing, Applications and Technologies. 
IEEE, December 2009, pp. 457-462. 

[10] M. Sato, Y. Sato, and M. Namiki. Proposal of a Multi-core 
Processor from the Viewpoint of Evolutionary Computation. 
In Proceedings of the IEEE Congress on Evolutionary 
Computation. IEEE, July 2010. pp. 3868–3875. 

[11] Wikipedia. Sudoku. Available via WWW: 
http://en.wikipedia.org/wiki/Sudoku (cited 8.3.2010). 

[12] Wikipedia. Backtracking. Available via WWW: 
http://en.wikipedia.org/wiki/Backtracking (cited 1.11.2011) 

[13] IEEE, ISO/IEC 9945-1 ANSI/IEEE Std 1003.1, 1996. 
[14] Y. Sato and H. Inoue. Solving Sudoku with Genetic 

Operations that Preserve Building Blocks. In Proceedings of 
the IEEE Conference on Computational Intelligence in Game.  
IEEE, August 2010, pp. 23–29. 

[15] T. Mantere and J. Koljonen, “Solving and Ranking Sudoku 
Puzzles with Genetic Algorithms,” in Proceedings of the 
12th Finnish Artificial Conference STeP 2006, October, 
2006, pp. 86-92. 

[16] T. Mantere and J. Koljonen, “Solving, Rating and Generating 
Sudoku Puzzles with GA,” in Proceedings of the IEEE 
Congress on Evolutionary Computation, September, 2007, 
pp. 1382-1389. 

[17] A. Moraglio, J. Togelius, and S. Lucas, “Product Geometric 
Crossover for the Sudoku Puzzle,” in Proceedings of the 
IEEE Congress on Evolutionary Computation, July, 2006, pp. 
470-476. 

[18] Edgar Galv´an-L´opez and Michael O’Neill, “On the Effects 
of Locality in a Permutation Problem: The Sudoku Puzzle,” 
In Proceedings of the IEEE Symposium on Computational 
Intelligence in Game.  IEEE, September 2009, pp. 80–87. 

[19] D.E. Goldberg, and K. Sastry, “A practical schema theorem 
for genetic algorithm design and tuning,” In Proceedings of 
the 2001 Genetic and Evolutionary Computation Conference, 
Morgan Kaufmann Publishers, pp. 328-335, 2001. 

[20] Number Place Plaza (eds.), “Number Place Best Selection 
110,” vol. 15, ISBN-13: 978-4774752112, Cosmic mook, 
December, 2008. 

[21] Super difficult Sudoku’s. Available via WWW: 
http://lipas.uwasa.fi/~timan/sudoku/EA_ht_2008.pdf#search
='CT20A6300%20Alternative%20Project%20work%202008' 
(cited 8.3.2010). 

 

414




