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ABSTRACT
Research on the implementation of evolutionary algorithms
in graphics processing units (GPUs) has grown in recent
years since it significantly reduces the execution time of the
algorithm. A relevant aspect, which has received little at-
tention in the literature, is the impact of the memory space
occupied by the population in the performance of the al-
gorithm, due to limited capacity of several memory spaces
in the GPUs. In this paper we analyze the differences in
performance of a binary Genetic Algorithm implemented on
a GPU using a boolean data type or packing multiple bits
into a non boolean data type. Our study considers the in-
fluence on the performance of single point and double point
crossover for solving the classical One-Max problem. The
results obtained show that packing bits for storing binary
strings can reduce the execution time up to 50%.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming.

General Terms
Performance

Keywords
CUDA, Evolutionary Computation, GPGPU, GPU, Paral-
lelization, binary-coded Genetic Algorithm.

1. INTRODUCTION
Evolutionary Algorithms are stochastic search methods

inspired by the natural process of evolution of species. EAs
iteratively evolve a population of individuals representing
candidate solutions of the optimization problem. The evo-
lution process is guided by the survival of the fittest principle
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applied to the candidate solutions and it involves the prob-
abilistic application of operators to find better solutions.

Genetic algorithms (GAs) are one of the most popular
types of EA. In GAs, individuals are often represented using
binary strings, although it is possible to work with non bi-
nary encodings [12]. Two alternatives for storing the binary
strings in memory when implementing a GA are: using a
boolean data type or packing multiple bits in a non boolean
data type. The former approach is easier to implement,
but wastes memory since the boolean data type is stored in
most languages in a byte (the smallest addressable unit of
memory). The latter approach does not waste memory but
involves working with bitwise operations. Recently, Knuth
has drawn attention to the potential offered by working with
bitwise operation to speedup general computer programs [6].

Graphics Processing Units (GPUs) were originally design-
ed as specific devices for graphics processing. However, they
have become very powerful low-cost platforms for general-
purpose computation [11]. For this reason, the study of EAs
implementation using GPUs [8] has grown at breathtaking
pace as it helps to reduce the runtime of these algorithms by
exploiting the massive intrinsic parallelism of such devices.

Threads can access data across multiple memory spaces
in current GPUs. Some memory spaces that are among the
fastest ones, such as registers and shared block memory, have
a very limited size. In this context, storing the same data in
less bytes can help to improve the performance. Besides, the
savings in the amount of memory used causes that a smaller
number of bytes have to be copied when moving the same
volume of information. Although there are several works
that address the implementation of GA on GPU, they are
generally focused on studying how to map one of the existing
models of parallelism on a GPU [8]. Few researchers have
considered such a low-level implementation issue as the data
type used for storing the population [1, 7, 14].

In this work, we make a comparative study of the perfor-
mance obtained using a boolean data type versus packing
multiple bits in a non boolean data type for implementing
a binary GA on a GPU. We consider the impact in perfor-
mance when solving the One-Max problem using the Sin-
gle Point Crossover (SPX) and the Double Point Crossover
(DPX). Our goal is to show that packing bits can signifi-
cantly reduce the runtime of a binary GA implemented on
a GPU, so researchers looking for additional reductions on
running times can adopt this type of implementations.

The paper is organized as follow. Next section briefly in-
troduces GPUs and CUDA. Section 3 reviews related work
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on GA implemented on GPUs. Section 4 describes the GA
used in this work, commenting aspects related to the bit-
wise implementation of the GA. Section 5 presents a com-
prehensive experimental study considering several instance
and population sizes. Finally, in Section 6, we outline the
conclusions of this work and suggests future research lines.

2. GPUS AND CUDA
GPUs can be viewed as a set of shared memory multicore

processors. They are usually considered many-cores proces-
sors due to the large number of small cores that they contain.
GPUs follow the single-program multiple-data parallel pro-
gramming paradigm in which cores run the same program
on multiple parts of the data, but do not have to be execut-
ing the same instruction at the same time [3]. The number
of threads that currently graphics card can run in parallel
is in the order of hundreds and is expected to continue in-
creasing rapidly, what makes these devices a powerful and
low cost platform for implementing parallel algorithms.
CUDA [5] is a C language API from nVidia that pro-

vides services ranging from common GPU operations in the
CUDA library to traditional C memory management seman-
tics in the CUDA runtime, including a device driver dedi-
cated to transfer data between the GPU and CPU. Addi-
tionally, nVidia provides a specialized C compiler to build
programs developed for the GPU.
A part of an application that runs many times but inde-

pendently on different data can be isolated in a kernel func-
tion to be executed on a GPU. When a kernel function is
called, a large number of threads are generated on the GPU.
The threads generated by a kernel invocation are grouped in
blocks that are run concurrently on a single multiprocessor.
Threads can access data on multiple memory spaces dur-

ing their execution [5]. Registers and shared memory are
fast memories. Registers are only accessible by each thread,
while shared memory can be accessed by any thread of a
block. The local and the global memories are the slowest
memories on the graphic card. Constant memory is fast
although is read-only for the device. Finally, the texture
memory has similar characteristics to constant memory.

3. RELATED WORK
The GPU implementation of most popular EAs has al-

ready been studied, being Genetic Programming (GP) the
technique with a broader development [8]. Regarding the
parallel models implemented, all the standard parallel strate-
gies of EA have already been studied, including the parallel
independent runs [15], the master-slave [2], the cellular [13]
and the island model [9, 14]. The GPU implementation of
GAs [4, 14] and also its hybridization with local searches has
also been studied, showing the performance benefits that can
be achieved. Although there are many works that address
the implementation of GA on GPUs, little effort has been
directed to study how the data type used for storing the
population influences the performance of the algorithm.
The main effort in this direction was made by Arora et

al. [1] that studied a binary-coded (with bit packing) and a
real-coded GA on GPU. Arora et al. modified aspects of the
algorithm implemented on the GPU to improve the perfor-
mance, such as generating the initial population and the ran-
dom numbers on the GPU. Even though the authors report
speedups of between 54.2 and 245.4 when solving the One-

Max problem with populations of between 512 and 16384 in-
dividuals for the binary-coded GA using SPX, the speedup
deteriorates when considering instances of size 100.

Recently, Langdon implemented a single instruction mul-
tiple data interpreter for GP that exploited sub-machine
code level parallelism on GPU [7]. Sub-machine code GP is
useful to speedup evaluation of solutions on Boolean prob-
lems since it uses bitwise operators to perform Boolean op-
erations in parallel. Langdon reports a peak performance of
over 445 billion GP operations per second when solving the
37 Boolean multiplexor.

Finally, Tsutsui and Fujimoto [14] stored the elements of
the permutations using an 8 bits data type when tackling
the Quadratic Assignment Problem. In this way, the authors
managed to load more individuals in shared memory despite
limiting the size of the instances that could be considered.

In this work, we focus on analyzing the benefits in per-
formance of a binary GA implemented on a GPU packing
multiple bits into a non boolean versus using a boolean data
type for storing binary strings. The approach followed aims
to make clear for other researchers whether or not to adopt
this type of implementations on their works. In this sense
we believe this work is a novel contribution.

4. A GA WITH BITWISE OPERATIONS
This section describes the algorithms implemented. The

next subsection introduces a high level description of the GA
considered in this work and comments on aspects common
to the CPU and GPU implementation. Then, the implemen-
tation details of the CPU and GPU versions are presented.

4.1 High Level Description of the GA
The GA used in this work is presented in Algorithm 1.

The initial population is randomly generated and then the
algorithm iterates until the optimal solution is found. In
each iteration, a new generation of pop size individuals is
produced by the selection, recombination, and mutation loop,
and then replaces the old population, i.e., it is a generational
GA. Two parents solutions p1 and p2 are selected from the
population by binary tournament based on their previously
computed fitness value. Then, two new solutions p1′ and p2′

are created by applying a crossover operator (SPX or DPX,
in our study) to the parents with a given probability cp. Fi-
nally, the bit flip mutation is applied to the recently created
solutions with a probability mp (if a solution is mutated, a
single randomly selected bit position is flipped).

The most natural representation for candidate solutions
in GAs when solving a discrete binary problem is a string
of bits. However, there are many alternatives for storing
binary strings in memory. In this work, we consider using
a boolean data type or packing multiple bits together in a
non boolean data type. The first option uses more memory
storage but its implementation is straightforward, while the
second option saves memory storage but its implementation
is more complex and it is not clear a priori if it improves the
performance of the algorithm.

The answer to the question of which option is better de-
pends on many aspects such as the architecture of the plat-
form, the operating system, the programming language, and
the compiler. In particular, the choice of the programming
language does not only influence the performance of the re-
sulting program, but also determines the different data type
alternatives. As our goal is analyzing the performance of
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Algorithm 1 Genetic algorithm

GA(pop size, cp,mp)
generation = 0;
pop = generateRandomPopulation(pop size);
evaluate(P (t));
while not optimalSolutionFound do

for i = 1 to pop size/2 do
p1 = selectBinaryTournament(pop);
p2 = selectBinaryTournament(pop);
(p1′, p2′) = crossoverOperator(p1, p2, cp);
p1′′ = bitF lipMutation(p1′,mp);
p2′′ = bitF lipMutation(p2′,mp);
newPop[2 ∗ i− 1] = p1′′;
newPop[2 ∗ i] = p2′′;

end for
pop = newPop;
evaluate(pop);
generation = generation+ 1;

end while

GPU and CPU implementations, we have used CUDA for
GPU versions and C for CPU versions. The C programming
language provides a boolean data type (bool) that uses one
byte of space to store one bit of information. The language
does not provide any mechanism to automatically handle
the packing of bits into data types, and therefore it has to
be implemented applying bitwise operations.
Although working at bit level is more complicated, it re-

duces the amount of memory used. For example, if a pop-
ulation of 480 individuals is used for solving an instance of
size 10,000, an implementation using bool requires 4,800,000
bytes to store a population, while packing bits in an 8 bits
data type needs 600,000 bytes. This means a 7

8
of reduction.

The savings in the amount of memory used causes that a
smaller number of bytes have to be copied back and forth
when moving the same volume of information. For example,
when a new solution is generated and bits are copied from
the parents, a single bit of the individual can be copied at
each step using bool data type, while 16 bits can be copied
together at the same step using unsigned short. Moreover,
the implementation on a GPU with bit packing can lead to
reductions in the execution time of the algorithm because
the fastest memory spaces are really small.
Working at bit level impacts on various parts of the GA:

the initial generation of the population, the fitness evalua-
tion, and the application of mutation and crossover opera-
tors. The main aspects of how bitwise operations impact in
the CPU and GPU implementation are commented next.

4.2 CPU Implementation
In the rest of this paper we refer to a word to indicate the

minimum piece of data of a certain data type. For example,
an individual representing a solution for an instance of size
10,000 requires 1,250 words of type unsigned char to be
stored. If the size of the instance is not a multiple of the
size of the data type, there is a valid and also an invalid part
in the last word of the individual. For example, an individual
representing a solution for an instance of size 10,000 requires
313 words of type unsigned int to be stored, but in the final
word only 16 of the 32 bits are valid.
To initialize each individual, each word of the individual

is initialized with 0s and 1s generated at random. The word

Figure 1: Population initialization in a 8-bit word

Figure 2: An example of SPX within a 8-bit word

(originally empty) is left shifted one bit and a new random
bit is added to the word using the bitwise or operator. The
algorithm iterates until the word is completed. Then, it con-
tinues with the next word until the individual is completed.
In the final word, if the size of the instance is not a multiple
of the size of the data type, additional left shifts have to be
computed so valid values are moved into the valid part of the
solution. Figure 1 shows how a single word of an individual
is initialized when using an 8-bit word.

To evaluate any fitness function, the bits of the solution
have to be obtained one by one. In this case, it requires using
an auxiliary mask (2dataTypeSize−1) to get the bits one by
one from each word of an individual (using the bitwise and

operator). The auxiliary mask is right shifted one bit in
every step to get a different bit. In the last word of the
solution, if the size of the instance is not a multiple of the
size of the data type, only the values in the valid part of the
solution have to be considered.

When a bit of the solution has to be mutated, first, we
need to calculate in which word of the solution it is stored
and which exact position of the word has to be flipped. An
auxiliary mask (2dataTypeSize−1) is right shifted the required
number of positions and the bitwise xor operator is applied
to the mask and the target word.

To implement SPX, we need to calculate in which word
and in which position within the word the crossover point is
mapped. If the position within the word is at the beginning
of the word, only complete words are copied and no bitwise
operations are used. On the contrary, if the position falls
within the word, bitwise operations have to be performed
in the target word and the rest of the words are copied un-
changed. The procedure of SPX within a word is showed in
Alg. 2 using the C language notation. The idea of the pro-
cedure is to shift the word to one side to discard unnecessary
information and then shift it in the opposite direction so the
required bits are back in place. Figure 2 shows an example
of how SPX works within a word using an 8-bit word.

The DPX implementation is similar to SPX, but there
are several special cases that should be considered. In the
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Algorithm 2 Single point crossover within a word

dataLength = 8 ∗ sizeof(Datatype);
realLength = ceil(solutionLength/dataLength);
word = crossoverPoint/dataLength;
wordPoint = crossoverPoint%dataLength;
restWP = dataLength− wordPoint;
snew1[word] = ((s1[word] >> restWP ) << restWP )

|((s2[word] << wordPoint) >> wordPoint);
snew2[word] = ((s2[word] >> resttWP ) << restWP )

|((s1[word] << wordPoint) >> wordPoint);

most general case, the two crossover points fall within a
different word and the same idea for SPX within a word
described is applied on both words. On the other hand,
when the two crossover points fall within the same word,
the shifts for obtaining the bits required by the operator are
made over the same word. Other special cases that deserve
attention in order to avoid unnecessary operations are when
the two crossover points are in the same position and when
one crossover point (or both) falls at the beginning of a word.

4.3 GPU Implementation
Our GPU implementations were designed so that speedup

should not degrade when considering an increasing size of
the instances. In some approaches, the performance often
increases with the size of the population but decreases when
the size of the instances increases. The main features of the
GPU implementations are described next.
Both the population and the sequences of random num-

bers (values for the probabilities of crossover and mutation,
the crossover point, and the mutate position) are stored in
the global memory of the GPU in arrays.
To make a fair comparison between the different CPU and

GPU versions with the same crossover operator, the gener-
ation and use of the sequence of random numbers is exactly
in the same order for all versions. Thus, the results ob-
tained working with the same seed are exactly the same for
the different versions. As a consequence, the random num-
ber generation and the population initialization procedures
of the GPU versions run on the CPU. This restriction can
increase the runtime of the GPU versions but isolates the
study of the effect in the performance caused by the pack-
ing of bits. In this work, we use Mersenne twister [10], one
of the most powerful random number generator nowadays.
The GPU implementation has exactly the same behavior

as Algorithm 1. Figure 3 shows the structure of the GPU
implementation of the GA. The execution starts with the
initialization of the population that runs in the CPU and
individuals are transferred to the global memory of the GPU.
When the algorithm reaches the stop condition, the final
population is transferred back from the GPU to the CPU.
The random number generation is also executed on the CPU
in each iteration and the numbers are also transferred to the
global memory of the GPU. On the other hand, the fitness
function evaluation, the application of binary tournament,
crossover and mutation operators runs entirely on the GPU.
The binary tournament and mutation operator have a

straightforward implementation on the GPU. In the binary
tournament, each thread gets the fitness of individuals in-
volved in the tournament from the global memory, computes
the winner of the tournament, and stores the position of
the winner for crossover in an auxiliary structure in global

Figure 3: Structure of GPU implementation

Figure 4: Thread organization for crossover

memory. To execute the binary tournament kernel, as many
threads as the size of the population are launched. In the
mutation operator, each thread decides whether the individ-
ual has to be mutated or not using a random value from the
global memory. If the solution has to be mutated, another
random value is obtained from the global memory indicat-
ing which position has to be modified, and then the bit is
flipped. To execute the mutation operator kernel, as many
threads as the size of the population are launched.

The fitness evaluation and the application of the crossover
operator are organized differently. Each thread processes
more than one element of the solution (as long as the size of
the solutions is more than 512 words or bits depending on
whether the bits are packed or not) but the elements used
by a single thread are not contiguous. When the kernels
are executed, the maximum number of threads per block is
launched (512 in our study).

Algorithm 3 presents the pseudocode of the SPX kernel.
Initially, each thread gets the thread block identifier (in-
dicating in which position of the new population the new
solutions should be stored), the position of the parents that
has to be crossed over, the value for the crossover proba-
bility, and the crossover point. When the crossover kernel
is executed, as many blocks of threads as half of the popu-
lation size are launched. Whether the crossover has to be
performed or not, the threads copy the first threadsInBlock
bits, then the second threadsInBlock bits and so on until the
new solutions are completely generated. Figure 4 shows the
thread organization for accessing data in the crossover oper-
ator. The access to global memory is coalesced as contiguous
threads access to adjacent memory locations. On the other
hand, the thread divergence (threads executed sequentially
because they are executing different instructions) is mini-
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Algorithm 3 SPX kernel pseudocode

id = blockId;
p1 = getParentPosition(2 ∗ id);
p2 = getParentPosition(2 ∗ id+ 1);
pcV alue = xprob[id];
point = xpoint[id];
if pcV alue <= PC then

for i = threadId; i < solLength; i + threadsInBlock
do

if i < point then
copy bit i from parent p1 to child 2*id
copy bit i from parent p2 to child 2*id+1

else
copy bit i from parent p2 to child 2*id
copy bit i from parent p1 to child 2*id+1

end if
end for

else
for i = threadId; i < solLength; i + threadsInBlock
do

copy bit i from parent p1 to child 2*id
copy bit i from parent p2 to child 2*id+1

end for
end if

mized since threads are usually grouped in 32 for execution
and there is a single crossover point, at most a single group
of threads diverges (the group that process the positions in
which the crossover point falls).
The fitness evaluation function follows the same idea re-

garding the thread organization and behavior. An auxiliary
structure in shared memory stores the partial fitness values
computed by each thread. Then, a reduction algorithm is
applied to calculate the total value of fitness. When the
crossover kernel is executed, as many blocks of threads as
the population size are launched.
The incorporation of bitwise operations at each of the op-

erations do not present major difficulties taking as a start-
ing point the GPU implementation using the bool data
type and the CPU implementation using bit packing. The
source code of the GPU kernels is publicly available at http:
//www.fing.edu.uy/~mpedemon/bitwise.html.

5. EXPERIMENTAL RESULTS
This section describes the problem used for the experimen-

tal study, the parameters setting and the execution platform.
Then, the results obtained are presented and commented.

5.1 The One-Max problem
The One-Max problem is a classical problem in EA liter-

ature that has been frequently used in experimental studies
since it is quite simple and enables focusing on the features
of the algorithm instead of the features of the problem. For
this reason, we have selected it for our study.
The problem consists in maximizing the number of 1s in

a binary string. Its formulation is presented in Equation 1.
The problem has a trivial solution x = (1. . . . .1).

max

N∑
i=1

xi

xi = {0, 1}, ∀i = 1. . . . .N

(1)

5.2 Parameters setting and test environment
The implemented versions for the experimental study are:

Bool (uses the bool data type), 8bits (uses the unsigned

char data type), 16bits (uses the unsigned short data type),
32bits (uses the unsigned int data type) and 64bits (uses
the unsigned long data type). Each of these versions was
implemented on CPU and GPU for both crossover operators.
All versions that use the same crossover operator generate
and use the sequence of random numbers in exactly the same
order. For this reason, the results obtained working with the
same seed are exactly the same.

The GA parameters values used were 0.9 for the crossover
probability and 0.1 for the mutation probability (if a solu-
tion is mutated, a single randomly selected bit position is
flipped). In our experimental study we consider four dif-
ferent instance sizes corresponding to bit sequences: 10000,
20000, 30000, and 40000.

The choice of the population size is an important issue.
On one hand, the features of the GPU have to be consid-
ered so its potential is not underutilized. On the other hand,
working with too large populations can make the compari-
son unfair for the versions implemented in the CPU. In our
study, we consider populations of size 480, 720, and 960 that
are not large compared to the values that are often used.

Thirty independent runs were executed for each case of
variants and scenarios considered. The execution platform
was a PC with a Quad Core Intel Xeon E5530 processor at
2.40 GHz with 48 GB RAM and a Tesla C1060 (240 CUDA
cores) using the CentOS Linux 5.4 operating system.

5.3 Experimental analysis
Table 1 and Table 2 show the mean runtime in seconds

to find the optimal solution and the Std. Dev. for all ver-
sions implemented on CPU using SPX and DPX. The re-
sults show that packing multiple bits in a non boolean data
type reduces the runtime on CPU implementations. In par-
ticular, reductions of up to 20% can be achieved and the
32bits version achieves the larger reduction in runtime in
most cases.

Table 3 and Table 4 show the mean runtime in seconds
to find the optimal solution and the Std. Dev. for all ver-
sions implemented on GPU using SPX and DPX. The results
show that also when implementing a GA in a GPU, packing
multiple bits in a non boolean data type reduces the run-
time. Increasing the number of packed bits up to 32 reduces
the runtime of the GA. In particular, reductions of more
than 50% can be achieved and the 32bits version achieves
systematically the larger reduction in execution time. The
32bits version with SPX or DPX implemented in GPU can
solve instances of up to 40,000 variables of the One-Max
problem without any specific knowledge of the problem in
less than a minute. The 64bit version has a larger execution
time than the other packed bit versions but the runtime is
shorter than the runtime of Bool version. This result does
not seem surprising since streaming multiprocessors in Tesla
C1060 graphic card are equipped with 32-bit integer ALUs.

To perform an analysis of the impact on performance in
GPU implementations of bit packing, two different indica-
tors are considered. The first indicator is the Speedup, pre-
sented in Equation 2, that measures the improvement in
performance of the GPU implementation versus the CPU
implementation of the same version. The second indicator
is SpeedupII , presented in Equation 3, that measures the
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Table 1: Runtime in seconds (mean±std) of CPU implementation with SPX
Pop Inst Bool 8bits 16bits 32bits 64bits

480

10000 220.47±11.47 208.36±10.76 193.59±9.94 188.04±10.33 188.16±11.09

20000 913.83±45.76 864.82±44.55 800.63±40.18 777.15±39.61 777.48±43.46

30000 2121.71±82.12 1999.13±75.65 1857.48±69.56 1798.92±67.07 1830.72±69.38

40000 3820.62±196.02 3593.37±182.82 3363.48±171.45 3244.25±166.03 3294.45±168.02

720

10000 273.01±9.90 257.87±9.09 233.76±9.85 235.96±9.88 234.36±9.48

20000 1144.42±30.54 1077.75±29.01 980.04±34.28 964.91±30.03 978.30±32.69

30000 2651.79±78.40 2492.08±69.92 2271.79±75.09 2276.84±131.99 2271.71±77.37

40000 4759.85±190.38 4497.17±187.72 4205.47±163.04 4052.57±158.60 4136.41±168.91

960

10000 322.97±9.11 304.20±7.89 275.01±7.23 271.36±8.40 274.58±11.54

20000 1364.14±33.57 1297.22±47.78 1163.19±32.55 1131.38±34.95 1164.95±40.41

30000 3180.68±190.95 3048.56±144.29 2691.72±98.73 2674.68±60.39 2692.71±64.82

40000 5699.59±306.77 5318.51±168.92 4953.95±155.54 4814.22±152.44 4876.88±152.97

Table 2: Runtime in seconds (mean±std) of CPU implementation with DPX
Pop Inst Bool 8bits 16bits 32bits 64bits

480

10000 188.24±8.30 175.10±7.44 171.17±10.09 155.98±6.96 161.79±7.75

20000 796.09±35.86 740.33±28.38 748.11±60.22 657.31±29.89 670.87±28.03

30000 1840.05±91.63 1705.73±87.20 1720.22±130.98 1564.12±75.97 1567.36±88.42

40000 3359.88±163.06 3176.83±195.46 2959.90±142.50 2855.10±138.10 2898.93±141.45

720

10000 228.07±9.32 214.92±8.74 197.10±10.49 191.57±8.81 190.26±8.42

20000 983.64±36.61 926.57±34.47 845.46±34.22 826.34±39.41 821.12±35.77

30000 2278.43±107.33 2094.95±90.36 1956.19±102.75 1919.88±69.28 1880.19±83.51

40000 4065.13±126.30 3853.45±133.99 3585.42±111.47 3448.41±111.96 3483.69±165.18

960

10000 265.92±8.47 250.69±9.77 229.40±9.16 221.81±7.33 226.94±7.11

20000 1128.64±38.33 1058.95±35.92 971.75±34.88 947.86±40.95 954.28±39.45

30000 2609.91±62.29 2414.27±86.65 2250.25±97.92 2209.25±52.27 2226.49±70.19

40000 4693.96±180.29 4479.28±171.86 4152.77±130.58 4032.75±142.14 4086.18±129.05

Table 3: Runtime in seconds (mean±std) of GPU implementation with SPX
Pop Inst Bool 8bits 16bits 32bits 64bits

480

10000 9.44±0.31 7.94±0.22 7.71±0.25 7.32±0.18 8.68±0.25

20000 24.12±1.02 16.89±0.62 15.96±0.61 14.58±0.53 18.31±0.72

30000 51.37±1.78 30.96±1.04 28.43±0.90 25.32±0.77 33.82±1.16

40000 84.36±4.07 48.77±2.26 44.89±2.04 39.55±1.78 54.94±2.57

720

10000 10.61±0.28 8.72±0.20 8.40±0.19 7.94±0.16 9.24±0.19

20000 29.01±0.67 19.62±0.42 18.50±0.36 16.70±0.35 21.48±0.48

30000 63.04±1.64 36.91±0.92 33.72±0.84 29.67±0.69 40.43±1.06

40000 104.60±3.89 59.07±2.11 54.04±1.90 47.30±1.64 66.74±2.40

960

10000 11.80±0.22 9.55±0.17 9.18±0.17 8.61±0.15 10.10±0.19

20000 33.87±0.74 22.54±0.42 21.10±0.41 19.02±0.38 24.58±0.49

30000 74.55±1.64 43.08±0.89 39.14±0.82 34.42±0.67 47.00±0.97

40000 123.63±3.70 69.35±2.03 63.31±1.80 55.20±1.55 78.19±2.27

Table 4: Runtime in seconds (mean±std) of GPU implementation with DPX
Pop Inst Bool 8bits 16bits 32bits 64bits

480

10000 8.60±0.23 7.38±0.15 7.21±0.17 6.86±0.13 7.79±0.17

20000 21.47±0.68 15.24±0.45 14.54±0.41 13.24±0.32 16.54±0.50

30000 45.45±2.01 27.64±1.14 25.59±1.02 22.70±0.94 30.19±1.26

40000 75.35±3.43 43.98±1.95 40.58±1.73 35.68±1.56 49.39±2.19

720

10000 9.60±0.24 8.03±0.18 7.85±0.16 7.40±0.18 8.50±0.18

20000 25.78±0.82 17.70±0.48 16.84±0.47 15.20±0.43 19.27±0.55

30000 54.90±1.75 32.51±0.98 29.96±0.94 26.38±0.78 35.53±1.11

40000 90.55±2.73 51.52±1.44 47.35±1.32 41.55±1.16 58.07±1.66

960

10000 10.61±0.21 8.70±0.16 8.41±0.16 7.99±0.16 9.18±0.19

20000 29.15±0.87 19.65±0.54 18.56±0.48 16.74±0.43 21.29±0.58

30000 63.10±1.35 36.84±0.75 33.65±0.67 29.59±0.57 40.07±0.80

40000 105.38±3.17 59.39±1.72 54.19±1.57 47.57±1.30 66.6±1.93
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Figure 5: Speedup values of GA with SPX

improvement in performance of a certain GPU implementa-
tion with respect to the CPU implementation of Bool ver-
sion. Figure 5 and Figure 6 present the Speedup of SPX and
DPX, respectively. The values of Bool and 32bits versions
are indicated.

Speedup =
TimeCPU implementation

TimeGPU implementation
(2)

SpeedupII =
TimeBool on CPU

Timeversion on GPU
(3)

The results obtained show that the strategy followed for
implementing the GA on the GPU allows speedup values to
scale when solving instances of increasing size. For example,
the 32bits version with SPX using a population of 480 indi-
viduals achieves speedup values of 25.69, 53.30, 71.05, and
82.03 when solving instances of size 10000, 20000, 30000,
and 40000, respectively. Even though the speedup values of
the implementation without bit packing also scale with the
size of the instance, the growth is much higher when the im-
plementation uses bit packing. The Bool version with SPX
using a population of 480 individuals only achieves speedup
values of 23.35, 37.89, 41.30, and 45.29 when solving in-
stances of size 10000, 20000, 30000, and 40000, respectively.
In other words, the 32bits version on a GPU increases at
least 79% the speedup with respect to the Bool version for
the largest instance considered. The results also scale with
the size of the population but with a smaller impact in per-
formance (the 32bits version with SPX on the instance of size
10000 achieves speedup values of 25.69, 29.72, and 31.52 us-
ing populations of size 480, 720, and 960, respectively). The
speedup values obtained with DPX are slightly worse than
those obtained with SPX.
Figure 7 and Figure 8 present the SpeedupII of SPX and

DPX, respectively. The SpeedupII values of Bool version
are exactly the same as Speedup values. The values of Bool
and 32bits versions are indicated. The speedup values of
the implementation with bit packing scale with the size of
the instance. For example, the 32bits version with SPX
using a population of 480 individuals achieves speedup val-
ues of 30.12, 62.68, 83.80, and 96.60 when solving instances

Figure 6: Speedup values of GA with DPX

Figure 7: SpeedupII values of GA with SPX

Figure 8: SpeedupII values of GA with DPX
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of size 10000, 20000, 30000, and 40000, respectively. The
32bits version obtains values of up to 100 for the largest in-
stance considered. The speedup values obtained with DPX
are slightly worse than those obtained with SPX.
The speedup values reported by Arora et al. [1] are higher

than the ones reported in this paper (with a population of
1024 individuals achieves speedup values of 49.75, 125.30,
and 105.84 for instances of size 10, 50, and 100, respec-
tively). However, there are a couple reasons that explain
the differences. First, the platform used for executions in
CPU in this work is a high end CPU (Quad Core Intel Xeon
E5530), while the one used by Arora et al. is a low-mid
range CPU (AMD Athlon 64 x2 Dual Core 3800+). As the
GPU used in both experiments is a Tesla C1060, the com-
parison of the speedup values is unfair because the runtime
of our CPU implementations is shorter. In the second place,
Arora et al. generated the initial population and the random
numbers on the GPU. As it was mentioned before, in this
work both procedures run on the CPU and then the data is
transferred to the GPU. If both procedures have been exe-
cuted on the GPU, the speedup values obtained in this work
could be even better.
The results obtained are satisfactory and scale when the

size of the population and mainly of the instances increases,
showing the potential of the strategy followed for imple-
menting a binary-coded GA on the GPU and the use of bit
packing. Although this approach has some difficulties in its
implementation, the source code of the GPU kernels of this
work are publicly available. This approach makes possible
to reduce the runtime up to 50% so it could be useful for
solving very large instances in a reasonable time.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have studied the influence in the execu-

tion time of using a boolean data type or packing multiple
bits in a non boolean data type of a binary-coded GA im-
plemented on a GPU for solving the One-Max problem. We
have implemented two classical crossover operators to un-
derstand the benefits of this type of implementations.
The results are satisfactory, obtaining the GPU imple-

mentation with bit packing in data types of 32 bits speedup
values of up to 100. Bit packing is a relatively simple im-
plementation technique that ensures that the resulting GA
implementation runs faster. We have tested our proposal
with very large instances and showed that reductions on
runtime scales when the size of the instances increases. For
this reason, and considering that in such scenarios it is ex-
tremely important to reduce the execution time, this type
of implementations can be very useful.
From this work and the conclusions drawn, three main

areas that deserve further work were identified. A first issue
that deserves further work is to incorporate constraint han-
dling to the GA because it is a more realistic scenario and
can affect the performance of the algorithm. In the second
place, the incorporation of specific knowledge to the search
process through a local search operator can contribute to
improve the performance of the CPU implementation. This
mechanism could raise implementation issues that should
be carefully evaluated when porting it to the GPU imple-
mentation. Finally, solving a more realistic problem than
the One-Max used in this paper would help to understand
how benefits in performance of the GA generalize to other
problems.

7. ACKNOWLEDGMENTS
Enrique Alba and Francisco Luna acknowledge support
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