
Identifying Similarities in TMBL Programs with Alignment
to Quicken Their Compilation for GPUs

Computational Intelligence on Consumer Games and Graphics Hardware

Tony E Lewis
Computer Science and Information Systems

Birkbeck, University of London
London, UK

tony@dcs.bbk.ac.uk

George D Magoulas
Computer Science and Information Systems

Birkbeck, University of London
London, UK

gmagoulas@dcs.bbk.ac.uk

ABSTRACT
The most impressive accelerations of Genetic Programming
(GP) using the Graphics Processing Unit (GPU) have been
achieved by dynamically compiling new GPU code for each
batch of individuals to be evaluated. This approach suffers
an overhead in compilation time.

We aim to reduce this penalty by pre-processing the in-
dividuals to identify and draw out their similarities, hence
reducing duplication in compilation work. We use this ap-
proach with Tweaking Mutation Behaviour Learning (TMBL),
a form focused on long term fitness growth. For individuals
of 300 instructions, the technique is found to reduce compila-
tion time 4.817 times whilst only reducing evaluation speed
by 3.656%.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms
Performance

Keywords
Tweaking Mutation Behaviour Learning (TMBL), Align-
ment, Graphics Card, Graphics Processing Unit (GPU), CUDA

1. INTRODUCTION
Graphics Processing Unit (GPU) technologies have made

it possible to perform Genetic Programming (GP) evalua-
tions at remarkable speeds. Two main techniques exploit
the GPU differently: data-parallel techniques dynamically
write and compile GPU code for each individual [1] [2];
population-parallel techniques use an interpreter running on
the GPU to evaluate individuals by treating them as data
[3] [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

Since the code for individuals in a data-parallel system is
directly compiled and does not need to perform interpreta-
tion, it typically executes much faster on the GPU than
equivalent code in a population-parallel system. On the
other hand, data-parallel systems suffer the extra Central
Processing Unit (CPU) time spend dynamically compiling in
each generation. If the data-set is vast, then each compiled
kernel is evaluated over very many test-cases and evaluation
takes much longer than any CPU compilation. In that case,
data-parallel’s higher evaluation speeds make it more suit-
able; for smaller data sets, population parallel may be more
effective.

It would help to find a middle ground. If the compila-
tion time of data-parallel approaches be reduced, even if
at the expense of the slightly decreased evaluation speeds,
then problems with normal data set sizes could benefit from
huge evaluation speeds. Compilers are typically complex
and highly optimised so attempting to improve them would
probably be unwise. The remaining possibility is to find
ways to give the compiler less work to do. This research in-
vestigated finding and exploiting patterns in the code passed
to the compiler.

2. TMBL
The form of Evolutionary Computation (EC) used for this

paper is Tweaking Mutation Behaviour Learning (TMBL,
pronounced “tumble”), which has been proposed as a baby
sister to GP [4] and is akin to linear GP. The key feature
of TMBL is its focus on long term fitness growth above all
else. It is built on the following hypothesis: long term fitness
growth is dependent on the ease with which mutations can
affect an individual’s behaviour without (necessarily) ruining
its existing functionality. Such changes are known as tweaks.

An analogy helps motivate this hypothesis. Imagine that
you are given around a hundred toy blocks with patterns on
their surfaces so that lining them up in one particular way
makes their patterns fit together. Imagine you are asked
to solve the puzzle but only using trial and error: no pre-
planning, no writing, just considering random changes and
performing them if they improve things.

Given this challenge, you would almost certainly take the
puzzle, lay it out flat and solve it without much difficulty.
Imagine you are then given an equivalent set of blocks but
this time you must build the blocks vertically in a tower.
This would be much harder. In fact, with around a hundred
blocks, you might find it almost impossible. However much

447

progress is made, at some point it’s necessary to grab some
block near the bottom and ruin the prior achievements.

The argument is that the same principles hold for a GP
tree flipped upside-down: at some point changes must be
made to a node near the root of the tree and that ruins all
the nodes above it. The lower blocks in the puzzle support
the blocks above them physically; the lower nodes in the
inverted GP tree support the nodes above functionally.

What went wrong when the tower became vertical? It
became difficult to make changes to parts where progress
had been made without damaging what had already been
achieved. This view motivates the design of a representation
for TMBL that is like a form of linear GP.

TMBL has high computational requirements and will typ-
ically be applied to problems with complex problems with
moderately large data sets. With currently technology, these
factors make it important to find the quickest possible meth-
ods of evaluating it. TMBL is focused on the long term fit-
ness growth through a slow process of tweaks on previous
successful solutions. The consequence of this is that its pop-
ulations typically contain individuals that are highly similar
to each other.

3. APPROACH
To exploit a GPU, one must write and compile a function

for it. This is known as a kernel. The data-parallel approach
involves writing such kernels each time a batch of individuals
is to be evaluated. These kernels are then used for evaluation
on the GPU. Several individuals may be grouped together
into one kernel. The problem of this approach is the time
spent compiling.

This research aimed to reduce the time spent dynamically
compiling code for the GPU. The chosen approach targets
the redundancy of compiling blocks of similar code by ex-
ploiting their similarities. Rather than sending code like
that on the left of Table 1 to the compiler, an aligning algo-
rithm is first used to identify the similarities and pull them
together to form code like that on the right of Table 1.

The biggest danger with this approach is that the execu-
tion speed is reduced because the execution path through
the kernel for each individual is more convoluted. Can the
faster compilation outweigh the slower evaluation? If so, un-
der what circumstances? The investigation sought to tackle
these questions.

How should the individuals be aligned? It might be pos-
sible to identify these similarities by keeping track of the
mutation and crossover operations performed on each indi-
vidual. However that would be a rather complicated and
brittle approach which would need extending with each new
genetic operator. A more robust approach is to align indi-
viduals when they are to be evaluated.

3.1 Alignment
How can lists of instructions be aligned? There is a stan-

dard approach to aligning lists of items but it was not used
in this context. To explain why, it is important to describe
the standard approach first.

The principles underlying alignment algorithms are not
dependent on the type of thing being aligned, so this paper
talks about aligning lists made up of instructions, letters,
items, amino acids and coloured shapes. The simplicity of
letters makes them suitable for outlining the principles.

Consider two lists of letters, DVSGGWIVHGVRGS and SGGWVH-

Table 1: Reducing work for the compiler through
alignment. On the left, each program’s code is in
a separate block. Since the compiler doesn’t know
these blocks are highly similar, it repeats work by
compiling each separately. On the right, the sim-
ilarities have been identified first so the common
instructions are pulled together and need only be
compiled once.

Unaligned Aligned

if (prog == 0) { ...

... slot1 += slot3;

slot1 += slot3; if (prog == 2) {

slot2 = 3.1096370; slot2 *= slot1;

... }

} slot2 = 3.1096370;

else if (prog == 1) { ...

...

slot1 += slot3;

slot2 = 3.1096370;

...

}

else if (prog == 2) {

...

slot1 += slot3;

slot2 *= slot1;

slot2 = 3.1096370;

...

}

GRKGSA. An alignment of these two lists involves laying them
out such that some items from one list might tally with some
items from the other. Hence an alignment is a list of align-
ment positions, each containing the next entry from one or
more of the lists. For example, one possible alignment is as
follows:
DVSGGWIVHGVRG.....S

| | |||||

..S..G..GWVHGRKGSA

This is a poor quality alignment for two reasons. First,
relatively few pairs of letters have been aligned. Second,
many of the aligned pairs do not contain matching letters.
This is permitted in other contexts but for this application,
instructions may only be aligned with each other if they are
identical. Under these criteria, the following alignment is an
improvement:
DVSGGWIVHGVR.GS

|||| ||| | ||

..SGGW.VHG.RKGSA

These alignments involve a single pair of lists. Later, it
will be necessary to create multiple alignments with more
lists. That algorithm will be described after the single align-
ment algorithm, upon which it is built.

How many possible ways are there to align a list contain-
ing m items with a list containing n items? That depends
on whether different alignments that tally the same pairs of
items should only be counted once. If not, the number of
ways of performing the alignment may be calculated itera-
tively. If either of the lists is empty, there is only one pos-
sible way since there are no choices that need to be made.
Otherwise, there are three recipes for aligning the lists:

448

• take the first item off the first list, add it to the end of
the alignment and then align the remaining items in
any possible way,

• take the first item off the second list, add it to the end
of the alignment and then align the remaining items
in any possible way or

• take the first item off both lists, tally them at the end
of the alignment and then align the remaining items
in any possible way.

The total number of ways is the sum of these possibilities
and so can be calculated with the following iterative formula:
F (m,n) = F (m−1, n−1)+F (m,n−1)+F (m−1, n), where
F (0, i) = 1 and F (i, 0) = 1 for any i. This formula gener-
ates the result that there are around 2.054 ∗ 1075 possible
ways to align two lists of 100 items. Fortunately things are
much better than this calculation suggests since the prob-
lem exhibits optimal substructure, ie optimal solutions can
be calculated from optimal solutions to subproblems. This
makes the problem amenable to standard dynamic program-
ming techniques.

3.2 The Needleman and Wunsch Algorithm
Bioinformatics involves aligning amino acid sequences as

a core technique and so has developed the area considerably.
The basic algorithm used for this is the Needleman-Wunsch
(NW) algorithm [5]. At the time of writing, the website
of the Journal of Molecular Biology, which published the
original NW paper [5], states it has received 2531 citations;
Google Scholar estimates 5612. This is the standard align-
ment algorithm, against which others may be contrasted.

A scoring system is used to guide the algorithm and the
standard scheme awards an alignment one point for tallying
each pair of identical items. The NW algorithm is an appli-
cation of dynamic programming to alignment. The principle
of dynamic programming is to find the optimal solution to
each subproblem and then reuse these results. This can
be applied to alignment by using the following subproblem:
align the two query sequences but with one or more items
taken off the front of either or both. The optimal solution
will contain the optimal solution to one of these subprob-
lems. This observation can be applied iteratively to build
up the optimal solution in simple steps.

For two sequences of lengths m and n, this process can be
represented elegantly in a matrix of dimensions m×n. Using
conventional matrix indexing, the sequences both start in
the top-left and finish in the bottom-right. Each possible
alignment can be represented as a path through the matrix
between these corners. Figures 1(a) and 1(b) can be viewed
as such matrices.

3.3 The Need for a New Alignment Algorithm
What is the computational complexity of the NW algo-

rithm with respect to the sizes of the sequences? For each
cell, the original NW algorithm scans for the maximum val-
ues in the strips running down and right from the below-right
cell. To examine the (i− 1)+ (j− 1)− 1 such cells for every
position (i, j) (where i > 1 and j > 1) in an m × n matrix
the number of examinations is:

m∑

i=2

n∑

j=2

(i+ j − 3)

=
1

2

(
m2n+mn2 −m2 − n2 − 4mn+ 3m+ 3n− 2

)

This means the algorithm takes O(n3) time to align two
sequences of length n and O(n2) time to compare a se-
quence of length n against a non-trivial, fixed-length se-
quence. Sankoff [7] later showed how to refine the algorithm
to reuse more information and hence reduce running times
to O(n2) time and O(n) respectively. This is now widely
referred to as the NW algorithm.

This means that NW is slower than would ideally be re-
quired here. Consideration of NW’s requirements will show
that they are much more stringent than those required here.
NW alignments are used to provide a consistent measure of
the level of sequence similarity between proteins and to iden-
tify stretches of sequences that are most similar. NW often
faces very difficult problems and is relied upon to perform
as good an alignment as possible.

In contrast, this problem only requires an alignment algo-
rithm to face simple problems and to do a fairly good job
quickly. Figure 1 helps to highlight the difference between
the sorts of problems that might be faced.

Items in protein two
Item

s in protein one

(a) Aligning two protein se-
quences of length 100

Items in TMBL program twoItem
s in T

M
B

L program
 one

(b) Aligning two TMBL pro-
grams of length 100

Figure 1: Aligning TMBL programs is very differ-
ent to aligning protein sequences so NW may not
be appropriate. A black pixel indicates a match be-
tween the two corresponding items such that they
could be aligned. Subfigure 1(a) shows the prob-
lem of aligning two sequences of length 100 from the
proteins 2yuv and 2yuz. Subfigure 1(b) shows the
problem of aligning two TMBL programs with 100
instructions. The two programs share the same sin-
gle parent.

Figure 1(a) shows the problem of aligning two protein se-
quences from the Protein Data Bank (PDB) files 2yuv and
2yuz. These sequences score 35% sequence identity over 97%
overlap (using a gap penalty of 3), which provides good ev-
idence of relatedness and suggests that this is a relatively
easy alignment problem. A faint line can be discerned run-
ning from top left to bottom right, a likely rough path for
the optimal alignment. However the signal for this path is
weak and is difficult to discern due to the substantial noise
of chance matches. Since each item is one of only 20 amino
acids, we would expect such “false positive” matches in 5%
of cases.

Contrast this with Figure 1(b) which shows the problem of
aligning two 100 instruction TMBL programs. Here, there
are very few items that match by chance since there are
very many possible instructions. Furthermore the signal is

449

very strong because they have received few mutations since
copying their shared parent’s genome.

Note that there is another important difference: in this
application two instructions may only be aligned together
if they match whereas bioinformatics sequence alignments
may include many aligned pairs that do not.

All of this motivates the design of a new, rough alignment
algorithm.

3.4 A Rough Alignment Algorithm
The proposed algorithm’s core idea is to just keep look-

ing for the next matching pair. The algorithm is only ever
interested in the next best step: it does not look far around
for better, less direct routes and it never turns back from its
current path. This narrowly focused approach is in contrast
to the global approach of NW. For problems such as the one
shown in Figure 1(a), the false positives could easily lead
this algorithm astray through poor alignment routes. How-
ever for problems such as the one shown in Figure 1(b), the
algorithm should rarely wander off track and should quickly
find its way back to the main path if it does.

Stage One (neighbouring pair alignments)

* Align each neighbouring list pair as follows

* Start at the top-left corner of the matrix

* Work diagonally down-right through matches

* If the next down-right item is not a match,

search progressively further down and right from

the previous match

* In searching, prefer:

1st: smaller maximum increments

2nd: more diagonal jumps

3rd: smaller first-list increments

* Continue from the next match found

* Repeat until there are no more matches to the

bottom right of the previous match

* Glue the resulting alignments together

Stage Two (build extra connections)

* Consider unconnected pairs where both items:

- immediately precede two connected items,

- immediately follow two connected items,

- start their respective lists or

- end their respective lists

* Reject the pair if its items mismatch

* Reject if connecting it would connect items

within a list

* Reject if connecting it would form a cross

* If the pair has not been rejected, connect it

* Repeat until no more connections can be made

Figure 2: A summary of the two stages involved in
the alignment algorithm.

In more detail, the algorithm starts from just outside the
top-left of the alignment matrix. It repeatedly looks for
the next matching position, and moves there. When the
algorithm can find no more matching pairs to the bottom-
right of its current position, it stops. Non-matching items
are never aligned and so can be ignored by the algorithm.

How does the algorithm choose the next matching position
based on its current location? In short, it sweeps out and

selects the first match it finds. The sweep is summarised as
“Stage One” in Figure 2 and is depicted in Table 3(a).

The worst case for the algorithm is aligning two sequences
with no matching items. This would require the described
algorithm to search the entire matrix for the first match be-
fore giving up. Hence the algorithm aligns two sequences
of length n in amortized O(n2) time, like the the NW algo-
rithm. However the best case is aligning two identical se-
quences and the described would perform this in linear time
whereas the NW algorithm would still take O(n2). Further-
more, this speed should degrade gracefully so that adding a
few, small mutations should add little time to the alignment.

X
1 4 9 16 25
3 2 7 14 23
8 6 5 12 21
15 13 11 10 19
24 22 20 18 17

(a) First 17 search positions

X
1

X

X
2

X

X
3

X

X
4

X

X
5

X

X
6

X

X
7

X

X
8

X

X
9

X

(b) First nine as diagrams

Figure 3: The order in which the proposed align-
ment algorithm sweeps to find the next match. The
X denotes the current location and the numbers in-
dicate the sequence of the sweep.

3.5 A Rough Multiple Alignment Algorithm
This mechanism provides the means to align pairs of lists

of items as illustrated in Figure 4(a) but this is only part of
the problem of forming a multiple alignment. How should
the code deal with aligning more than two lists? A glob-
ally optimum NW-based algorithm can align k sequences of
length n using a k-dimensional matrix. That algorithm runs
in O(nk) time (with respect to both n and k) which is unac-
ceptable for all but the smallest of cases. The compromise
often adopted in bioinformatics methods is to perform all-
versus-all pairwise comparisons (typically alignments) and
then use the results iteratively to identify the next most
similar list and add it into a core (by performing further
alignments). This has much better running time since it re-

quires k(k−1)
2

alignments and so — when used in conjunction

with NW— runs in O(n2k2) time (with respect to n and k).
Even so, this problem demands a quicker, rougher ap-

proach. Rather than aligning all k(k−1)
2

pairs, the new al-
gorithm aligns each of the k − 1 pairs of neighbouring lists
and then glues the resulting alignments together. As shown
in Figure 4(b), this may leave some easy connections missed
out. For instance, if one individual with one mutated item
is placed in the middle of many otherwise identical lists, the
mutated item will break the connection between identical
items on either side.

Figure 5 shows an example of individuals being aligned
after stage one and after stage two. Notice situations such
as the one at the top of Figure 5(a): the first mutated in-
struction has broken the connection between its neighbours.
In Figure 5(b), these two groups have been connected.

The proposed algorithm’s second stage takes the aligned-

450

(a) Align pairs of lists (b) Glue pairs; link more items (c) Do not join items within a list

(d) Do not form crosses (e) Look out for complex crosses

Figure 4: Grey strips represent lists of items, coloured shapes represent items being aligned, solid lines
represent alignment links and dashed lines represent possible new links. 4(a) First, items are aligned within
pairs of neighbouring lists. 4(b) Then these alignments are glued together and extra connections (eg the
dashed line) may be formed. These links must not be formed if they connect items within a list or form
crosses. 4(c) Joining items within a list (eg by forming the dashed line) breaks the alignment since it means
one of those duplicates will be absent from the resulting code. 4(d) Forming a cross (eg by forming either
of the dashed lines) breaks the alignment since then one joined group (eg joined circles) comes both before
and after another (eg joined triangles). 4(e) Identifying some crosses (such as the one created by joining the
third circle to the other two) may involve tracing back through lists that do not include any of the items to
be joined (eg the list containing one triangle and one star).

and-glued neighbour-pair-lists from the first stage and scans
for these extra connections. This avoids spending time on
another alignment as is usual in bioinformatics multiple align-
ments. Since these connections are not formed in an align-
ment process, they are vulnerable to two new dangers, which
are worth highlighting.

The first danger is connecting items such that two identi-
cal items within the same list are placed in the same group
of equivalents. Figure 4(c) shows an example in which the
proposed dashed link would result in the two green circles in
the middle list being placed in the same group. Of course,
this problem only occurs when a list contains two identical
items. This is rare with this TMBL representation but must
still be guarded against.

The second danger is forming a cross between two groups
of equivalents so that each group contains some items before
the other group and some items after it. Figure 4(d) shows
an example in which either of the proposed dashed links
would create a group that has items before another group
and items after it. This would make the alignment invalid
and so must be avoided. Figure 4(e) shows a more compli-
cated cross example in which the proposed dashed link would
create a group that has items before the triangles and the
stars and an item after them. This example illustrates that

some crosses may only be identified by tracing through re-
lationships and through lists that do not include any of the
items to be joined.

The scan for these extra connections proceeds by searching
through the individuals’ instructions. For each, a list of
candidates instructions for connection is drawn up. To be a
candidate for connection, a pair must be matching, not yet
connected and must either both start or both precede their
respective lists or either both immediately precede or both
immediately follow two connected items.

Such items are checked for conflicts and if there would not
be any, the connection is added. When any connection has
been made between two items, the algorithm follows back
up the pairs that immediately precede them in case they can
be sequentially connected like two sides of a zip.

The algorithm checks for the two types of conflict de-
scribed earlier: overlaps and crosses. The checks for cross
are the most involved so these are only initiated when all
other tests have been passed. The cross-checking subrou-
tine checks for crosses from above the first item to below
the second item. It is called with both orderings of the item
so that it checks for crosses in either direction.

The cross-checker scans up the equivalences from the first
item and searches for any routes that lead to something be-

451

’-’ matrix

(a) Stage one

’-’ matrix

(b) Stage two

Figure 5: Aligning 20 individuals, each with 80 in-
structions. Columns represent individuals, black
marks represent individuals’ instructions and rows
represent aligned instructions. After stage one there
are 183 positions; after stage two more connections
have been identified and there are only 137 positions.

low the second item. It is important to ensure that any
possible cross will be found but it is also important that no
more time is spent checking for crosses than is necessary. To
this end, the code works on the assumption that there are
no pre-existing crosses (or other conflicts) in the alignment.
This allows the code to terminate searches whenever it hits
a “stop”: an instruction beyond which a cross cannot exist
if there are no pre-existing crosses. Instructions are stops
if they are equivalent to an item preceding an equivalent of
the second item or if they precede another stop. A simplified
version of this is summarised as “Stage Two” in Figure 2.

4. EXPERIMENTS
The Compute Unified Device Architecture (CUDA) plat-

form was used for the experiments. The techniqe is note
dependent on the platform and might be applied in other
GP compilation scenarios such as compiling code for exe-
cution on a multi-core CPU. The C++ alignment code was
written as a template so it can align numbers, strings or
TMBL instructions.

The experiments were concerned with the effects of the
alignment on compilation time and evaluation speed. The
results were verified against results from non-aligned code
are not otherwise of interest.

The individuals in the experiments were generated as chil-
dren of a single seed parent using a low mutation rate. Two
points should be noted here. First, this creates groups of

similar individuals which will favour the alignment tech-
nique. The aim was to provide a realistic environment.
However in other systems, such as standard GP systems,
the diversity may be much greater and this may make align-
ment technique worthless.

Second, the seed individual is evolved and so is likely to
use most of its instructions (as has been found with TMBL)
so the compiler will not optimise away many of the instruc-
tions. This might be very different if the seed individual were
randomly initialised. To generate individuals with fewer in-
structions, the instructions were removed from the start of
the seed individual. This may change the individual so that
more of the instructions may be optimised away. Hence the
recorded evaluation rates for low numbers of instructions
may be an overestimate.

Operating system Ubuntu Linux 10.10
Linux Kernel 2.6.35-28-generic-pae
GPU Device nVidia GeForce GTX 260 [Core 216]

(216 cores, core clock speed: 590MHz
shader clock speed: 1296MHz)

CUDA toolkit v3.2
Device driver 260.19.44
NVCC v0.2.1221

Table 2: Details of the system

Number of CPU threads 1
Individuals per kernel 4
Number of individuals 120
Number of instructions 200
Number of evaluation repeats 8
Number of test-cases per evaluation 65536
Number of iterations per evaluation 50

Table 3: Default parameters for the runs

The system configuration is provided in Table 2 and the
default parameters are provided in Table 3. The last three
entries refer to how the evaluation speeds were assessed:
this involved timing eight consecutive launches of kernels,
each executing all individuals for 50 iterations over 65536
test-cases. For a standard population of 120 individuals,
each with 200 TMBL instructions, this means executing
0.6291456 × 1012 TMBL instructions.

The mutation rate was set such that 95% of individuals
have at least one mutation. For individuals with 200 instruc-
tions, this translates to a rate of 1.487% by instruction.

Each of the results in the experiments is averaged over five
runs. Each line in the graphs in Section 5 has a background
bar that indicates the mean value plus and minus one esti-
mated standard error. In many cases, these bars are so thin
that they cannot be seen. This suggests that the relatively
small number of repetitions has been adequate to give good
estimates of the means.

5. RESULTS
Figure 6 shows the time per individual to align and gener-

ate the CUDA C source. This indicates that the time spent
on these tasks is very small and that the alignment actually
reduces this time. This is presumably because it reduces the
amount of code that must be output. This might also sug-
gest that the code-outputting code would benefit from some

452

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 50 100 150 200 250 300T
im

e
pe

r
in

di
vi

du
al

 to
 a

lig
n

an
d

ge
ne

ra
te

 s
ou

rc
e

(in
 s

ec
on

ds
)

Number of TMBL instructions

Not aligned
Aligned

Figure 6: The time per individual to align and gen-
erate source over varying numbers of TMBL instruc-
tions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 fr
om

 C
U

D
A

 C
 to

 c
ub

in
 (

in
 s

ec
on

ds
)

Number of TMBL instructions

Not aligned
Aligned

Figure 7: The time per individual to compile from
CUDA C to cubin over varying numbers of TMBL
instructions

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250 300

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Number of TMBL instructions

Not aligned
Aligned

Figure 8: The evaluation speed over varying num-
bers of TMBL instructions

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 2 4 6 8 10 12 14 16 18 20T
im

e
pe

r
in

di
vi

du
al

 to
 a

lig
n

an
d

ge
ne

ra
te

 s
ou

rc
e

(in
 s

ec
on

ds
)

Number of individuals per kernel

Not aligned
Aligned

Figure 9: The time per individual to align and gen-
erate source over varying numbers of individuals per
kernel

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20

C
om

pi
le

 ti
m

e
pe

r
in

di
vi

du
al

 fr
om

 C
U

D
A

 C
 to

 c
ub

in
 (

in
 s

ec
on

ds
)

Number of individuals per kernel

Not aligned
Aligned

Figure 10: The time per individual to compile from
CUDA C to cubin over varying numbers of individ-
uals per kernel

 0

 50000

 100000

 150000

 200000

 0 2 4 6 8 10 12 14 16 18 20

E
va

lu
at

io
n

sp
ee

d
(in

 m
ill

io
n

T
M

B
L

op
er

at
io

ns
/s

ec
on

d)

Number of individuals per kernel

Not aligned
Aligned

Figure 11: The evaluation speed over varying num-
bers of individuals per kernel

453

optimisation. Encouragingly, the graph seems to suggest
that this time increases linearly with the number of TMBL
instructions.

Figure 7 shows the time taken per individual to compile
from CUDA C to a cubin binary file, ready to be loaded
onto the GPU. These durations are much longer than those
in Figure 6. The reduction in compile time achieved by
alignment is more pronounced as the number of TMBL in-
structions increases. At 300 instructions, the compile time
per individual is 0.347 seconds without alignment and 0.072
seconds with, a reduction of 79.238%.

Figure 8 shows the evaluation speeds and it shows the
reduction in evaluation speed caused by alignment. The
slowdown reduces as the number of TMBL instructions in-
creases and is relatively small from 60 instructions. At 300
instructions the evaluation speed is 155052.633 million oper-
ations per second without alignment and 149383.227 million
operations per second with, a decrease of only 3.656%.

Figures 9, 10 and 11 show these same properties over vary-
ing numbers of individuals in each kernel. Figure 9 shows
that the alignment time remains small across these values.

Figure 10 shows that the reduction in compile time from
alignment gets much larger as the number of individuals
per kernel increases. Figure 11 shows that increasing the
number of individuals per kernel also increases the reduction
in evaluation speed.

Note that the lines meet at one individual per kernel in
Figures 10 and 11 because at this point, there is no alignment
work to be done so the input to the compiler remains the
same.

6. CONCLUSION
Code was written to identify the similarities in TMBL

kernels and unite them. The aim was to reduce the compi-
lation time whilst keeping the evaluation speed comparable.
Implementing this involves aligning the individuals against
each other. The standard NW algorithm was examined but
was found to be a more thorough algorithm than was re-
quired so a new algorithm was proposed that is rough but
fast. This was extended with another rough but fast algo-
rithm for forming multiple alignments.

Experiments showed that, at 300 instructions, the method
reduced compilation time 4.817 times whilst only reducing
evaluation speed by 3.656%. This satisfies the aim of mak-
ing data-parallel evaluation speeds accessible for moderately
sized data-sets. The amount of time spent aligning the in-
dividuals and generating the source code was relatively neg-
ligible and was even quicker when no alignment was being
used. Increasing the number of instructions increased the re-
duction in compile time and decreased the reduction in eval-
uation speed. Increasing the number of programs per kernel
increased the reduction in compile time but also increased
the reduction in evaluation speed. These results suggests
the following guidelines: use as many instructions as can be
benefited from and then tune the number of individuals per
kernel to fully load both the GPU and CPU.

The program conditions in the aligned source code only
used if statements and only tested the individual’s index
with equality tests. Future work could tackle the evaluation
speed reduction by adding else-if and else statements and by
using greater-than and less-than tests.

The technique was applied to a TMBL representation but
it could equally be applied to other forms of GP. There

are two issues that need to be considered in judging the
applicability: the representation of the individuals and the
nature the population.

The representation is important in that it must allow sim-
ilarities to be exploited to reduce duplication in the com-
piler’s workload. In practice this should be possible for most
forms, for example GP trees can be flattened into linear lists
of instructions and these can then be aligned. This issue
might not be the problem it initially appears.

More important is the nature of the population. The work
here exploits the fact that in most TMBL generations, most
individuals are mostly similar to each other. This suggests
that the technique may be better suited to forms in which
populations tend to contain many highly similar individuals.
Where this is not true the technique is likely to be worthless.

7. REFERENCES
[1] D. M. Chitty. A data parallel approach to genetic

programming using programmable graphics hardware.
In D. Thierens, H.-G. Beyer, J. Bongard, J. Branke,
J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr,
T. Kovacs, S. Kumar, J. F. Miller, J. Moore,
F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O.
Stanley, T. Stutzle, R. A. Watson, and I. Wegener,
editors, GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
volume 2, pages 1566–1573, London, 7-11 July 2007.
ACM Press.

[2] S. Harding and W. Banzhaf. Fast genetic programming
and artificial developmental systems on gpus. In HPCS
’07: Proceedings of the 21st International Symposium
on High Performance Computing Systems and
Applications, page 2, Washington, DC, USA, 2007.
IEEE Computer Society.

[3] W. B. Langdon and W. Banzhaf. A SIMD interpreter
for genetic programming on GPU graphics cards. In
M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia
Alcazar, I. De Falco, A. Della Cioppa, and
E. Tarantino, editors, Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008,
volume 4971 of Lecture Notes in Computer Science,
pages 73–85, Naples, 26-28 Mar. 2008. Springer.

[4] T. E. Lewis and G. D. Magoulas. Tweaking a tower of
blocks leads to a TMBL: Pursuing long term fitness
growth in program evolution. In IEEE Congress on
Evolutionary Computation (CEC 2010), pages
4465–4472, Barcelona, Spain, 18-23 July 2010. IEEE
Press.

[5] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443 – 453, 1970.

[6] D. Robilliard, V. Marion-Poty, and C. Fonlupt.
Population parallel GP on the G80 GPU. In M. O’Neill,
L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar,
I. De Falco, A. Della Cioppa, and E. Tarantino, editors,
Proceedings of the 11th European Conference on
Genetic Programming, EuroGP 2008, volume 4971 of
Lecture Notes in Computer Science, pages 98–109,
Naples, 26-28 Mar. 2008. Springer.

[7] D. Sankoff. Matching sequences under deletion-insertion
constraints. Proceedings of the Natural Academy of
Sciences of the U.S.A., 69:4–6, 1972.

454

