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ABSTRACT
Most literature on variations of vehicle routing problem as-
sumes that a vehicle is continuously available within the
planning horizon. However, in practice, due to the working
time regulation, this assumption may not be valid in some
applications. In this paper, we study a multiperiod vehicle
routing problem with profit (mVRPP), where the goal is to
determine a set of routes within the planning horizon that
maximizes the collected reward from nodes visited. The
vehicles can only travel during working hours within each
period in the planning horizon. An effective memetic al-
gorithm with giant-tour representation is proposed to solve
the mVRPP. To efficiently evaluate a chromosome, we de-
velop a greedy split procedure to optimally partition a given
giant-tour into individual routes. We conduct extensive ex-
periments on a set of modified benchmark instances. The
result demonstrates that our approach generates promising
solutions which are close to the upper bounds.
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1. PROBLEM DESCRIPTION
Most studies on routing and scheduling problems usually

make an assumption that vehicles or field technicians are
continuously available within the planning horizon. How-
ever, in practice, due to the working hour regulation, this

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.
†corresponding author

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

assumption may not be valid in some applications. In ad-
dition, the consideration of working hours in routing and
scheduling is important to increase safety in road freight
transport and punctuality of service delivery.

In this paper, we investigate a multiperiod vehicle routing
problem with profit (mVRPP), which takes regular working
time restriction into consideration. The problem is defined
on an undirected graph G = (V,E), where V = {0, . . . , n}
is the set of nodes, E = {(i, j)|i, j ∈ V } is the set of edges.
Each node i associates a reward wi. The depot node is 0
and w0 = 0. Each edge (i, j) ∈ E has a nonnegative cost
cij , where cij is the travel time between i and j. The travel
time matrix satisfies the triangle inequality. There are K
vehicles which stay at the depot initially. The mVRPP aims
to find K routes that each starts and finishes at node 0 in a
planning horizon consisting of D periods such that the total
collected reward is maximized. Each node can be visited
at most once. Note that there is a working time restriction
for each vehicle, where the accumulated travel time in each
period taken by a vehicle cannot exceed a limit L.

We denote S as a feasible solution, consisting of K routes,
i.e. S = (r1, r2, . . . , rK). Each route starts and ends at
the depot. A route rk = (r1k, r

2
k, . . . , r

D
k ) is divided by D

trips, where rdk is a sequence of nodes representing a trip
in period d. Denote vs(r

d
k) and ve(r

d
k) to be the starting

node and the ending node of the trip rdk. After finishing
the last visit in period d, the vehicle will stay at the node
ve(r

d
k). Then the vehicle will start a new trip from ve(r

d
k) in

next period, i.e. ve(r
d
k) = vs(r

d+1
k ), d ≤ D − 1. Note that

vs(r
1
k) = ve(r

D
k ) = 0. Let T (rdk) be the total travel time of

route k in period d. A trip rdk is feasible if T (rdk) ≤ L. A
route rk is feasible if all trips in route rk are feasible. A
solution S is feasible if all routes are feasible and all nodes
are visited at most once. A solution S is optimal if the total
reward collected by S is maximum among all the feasible
solutions.

We apply a Memetic Algorithm (MA[2]) to resolve the
mVRPP. In our proposed MA, the set of routes is repre-
sented by a sequence of distinct nodes without delimiters,
called a giant-tour [3]. An exact split procedure is employed
to evaluate the chromosomes.

2. MEMETIC METHODOLOGY
In this section, we introduce a memetic algorithm to solve

mVRPP, which involves chromosome representation, evalu-
ation, initial population, crossover, mutation, local search
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Algorithm 1: Process of the Memetic Algorithm

1 Construct the initial population PI ;
2 Evaluate each chromosome in population PI ;
3 while the termination criteria is not reached do
4 The new population PN is set as empty;
5 repeat
6 Randomly select two parent chromosomes from

PI ;
7 Produce two offspring from the parent

chromosomes by crossover operator;
8 Put offspring chromosomes into PN ;

9 until PN is full ;
10 P ← PI ∪ PN ;
11 Perform Mutation on each chromosome in P with

probability pm except for the best chromosome;
Perform Local Search on each chromosome in P ;

12 Set PI empty;
13 Select the elite chromosomes from P into PI ;

and population selection. Algorithm 1 presents the general
structure of the proposed MA.

2.1 Chromosome Encoding
Suppose that S = (r1, r2, . . . , rK) is a feasible solution of

mVRPP. A chromosome, called ‘giant-tour’, is defined as a
permutation π by the following procedure.

1. Set π as an empty sequence.
2. Sequentially append the nodes in each route rk, k =

1, 2, . . . ,K to π. For each trip rdk, d = 1, 2, . . . , D − 1,
append all nodes except vs(r

d
k) into π. For the trip rDk ,

append all the nodes except the first node vs(r
D
k ) and

last node ve(r
D
k ) into π.

3. Append all non-visited nodes to π in arbitrary order.

2.2 Chromosome Decoding and Evaluation
Given a giant-tour π, we can convert it into a solution to

the mVRPP by partitioning it intoK+1 sub-sequences. The
first K sub-sequences correspond to the K vehicle routes,
while the last sub-sequence contains the set of unvisited
nodes. A greedy split procedure is introduced to partition
the permutation π into K feasible routes. For the sake of
brevity, we cannot present the detail descriptions of our split
procedure in this paper. Nevertheless, we can show that the
split procedure runs in O(n) time. Hence, it enables us to
devise an efficient algorithm to convert a given chromosome
into a feasible solution. Theorem 1 guarantees the optimal-
ity of the solution generated by the greedy split procedure.

Theorem 1. For the give giant-tour π, the partition S
found by the split procedure is optimal in terms of collected
reward.

2.3 Initial Population
Five members of the initial population in our approach

are constructed using best-first heuristic approaches. The
remaining members are random permutations in {1, . . . , n}.

2.4 Crossover
In each generation, we use an order-based crossover (OX)

operator to generate all offspring chromosomes.

2.5 Mutation
Each chromosome in the candidate pool P will be chosen

for mutation by probability pm. We randomly select two
nodes in the chosen chromosome and exchange the positions
of the two nodes.

2.6 Local Improvement Process
We apply a simulated annealing (SA) approach to improve

a single chromosome in the candidate pool. The improve-
ment process begins from a temperature T = t0 and contin-
ues to cool down until T reaches the target level. In each
iteration, we first apply four classic heuristic operators[1]
exchange, 2-opt, relocate and segment-move on the chromo-
some in this order num ops times. The new solution SN by
generated operators is always accepted if it is better than the
incumbent solution SI . Otherwise SN is accepted according
to probability function e∆/T , where ∆ = f(SN )− f(SI).

In addition, We use a TSP operator attempting to im-
prove the resultant solution. Given a partial trip within a
period, the lowest travel cost of the partial trip is a travel-
ling salesman path problem, the dynamic programming al-
gorithm proposed by [4] is able to find the optimal sequence
when the number of nodes visited is relatively small. We
always accept the chromosome generated by TSP operator.

2.7 Selection
To choose elite chromosomes at next generation, we select

p best chromosomes from the pool of incumbent population
PI and new populations PN .

3. RESULT
We first conduct the instances of the team orienteering

problem(TOP), which is a special case of mVRPP and only
involves single period planning. The algorithm can gen-
erate high quality solutions in which the gaps are 0.08%
compared to the best solutions while the average computing
time is around 20 seconds for each test instance. Besides, we
construct 24 mVRPP instances based on the vehicle rout-
ing problem with distance restriction(DVRP). For these in-
stances, the node size varies from 240 to 400, and the plan-
ning horizon D is equal to 1,2 or 4. The experiments also
show that the memetic algorithm has a great potential in
solving large scale problem.
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