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ABSTRACT
Many of the most effective attempts to harness the power
of the Graphics Processing Unit (GPU) to accelerate Ge-
netic Programming (GP) have dynamically compiled code
for individuals as they are to be evaluated. This approach
executes very quickly on the GPU but is slow to compile,
hence only vast data-sets fully reap its rewards.

To reduce compilation time, we generate and compile code
in the lower-level language PTX. We investigate this in the
context of implementing Tweaking Mutation Behaviour Learn-
ing (TMBL) on the GPU. We find that for programs of
300 instructions, using PTX reduces the compile time 5.861
times and even increases the evaluation speed by 23.029%.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms
Performance

Keywords
Tweaking Mutation Behaviour Learning (TMBL), Parallel
Thread EXecution (PTX), Graphics Card, Graphics Pro-
cessing Unit (GPU), CUDA

1. INTRODUCTION
This paper describes an investigation into coding individ-

uals in a lower-level, assembly-like language for evaluating
them on the Graphics Processing Unit (GPU). This relates
to two lineages of previous research: the use of Central Pro-
cessing Unit (CPU) assembly or even machine code to en-
code individuals and the use of GPUs to evaluate them.
In both cases, researchers have been motivated by wanting
to feed the computational hunger of Genetic Programming
(GP) with fast fitness evaluations.
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CPU implementations of GP adopt one of three approaches
to evaluating individuals: interpreting them, dynamically
compiling them or directly encoding them in machine code.
The last option is probably the most technically daunting
and yet—perhaps surprisingly—was substantially investigated
whilst GP was relatively young. Nordin and his collabora-
tors were responsible for much of this work and the focus was
a system originally called Compiling Genetic Programming
Systems (CGPS) [9].

CGPS was later renamed to Automatic Induction of Ma-
chine code with Genetic Programming (AIMGP) to avoid
the word “compiling” giving the false impression that the
system dynamically compiles from source code in each gener-
ation. Later work managed to incorporate such functionality
as “arithmetic operators, large indexed memory, automatic
decomposition into subfunctions and subroutines (ADFs),
conditional constructs i.e. if-the-else, jumps loop structures,
recursion, protected functions string and list functions” [10].
That system was found to be 60 times faster than the inter-
preting system on average.

Langdon et al applied AIMGP to evolve the hand-eye co-
ordination system to control a 60cm humanoid robot called
Elvis [6]. The software architecture used three layers: a re-
active layer, a model building layer and a reasoning layer.
The model building layer utilised the high speed of AIMGP,
stated to be around 40 times greater than that of conven-
tional GP. The system used version 2.0 of Discipulus.

Rather than using constrained genetic operators to ensure
program safety, Kuhling et al used the exception handling
system of the host machine to provide the required protec-
tion [4].

Squillero’s motivation for evolving machine code programs
in his μGP system [13] was not to make the GP faster but
to use it to generate tests for the processor on which it runs.
A μGP individual can be executed directly on the target
processor or can be tested on a simulation of the processor
and assessed for characteristics such as instruction cover-
age. The GP is used to develop test programs with suitable
properties for effectively testing processors.

More recently, Siebel et al encoded the neural networks
that they were evolving into machine code [12]. One of the
nice features of their approach was to represent the weights
of the neural network in an external data structure so they
could be modified by the evolutionary process without hav-
ing to recompute the machine code. Consequently, they
found the time spent on compilation at the start of the run to
be a negligible part of run time when many generations were
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evolved. They found that their technique performed around
5-10 times faster than a standard interpreted approach.

Two investigations into evolving GPU shaders [2], [8] pro-
vide a link between the two research lineages. In both cases,
the fitness was provided through interactive user selection
of objects, dynamically rendered by the GPU with the use
of the shader. In one of these cases, the language used was
quite low-level [8], in the other it was the high-level C-like
language of nVidia’s Cg framework [2].

In recent years, researchers have started to look to the
GPU for more power. Early attempts at exploiting the GPU
for GP were data-parallel [1] [3] which is a GPU version of
the compiling method described before. Later works em-
ployed population-parallel methods which use GPU inter-
preters [5] [11]. In contrast to the situation with the CPU,
compiling methods on the GPU are perhaps simpler than
interpreting methods.

The evaluation speeds achieved by data-parallel methods
are often remarkable but are marred by the CPU time spent
on compiling kernels. This problem is minimal when the
data-set is vast because then each kernel is evaluated on very
many test-cases and so the evaluation time is much larger
than the compilation time. For more reasonably sized data-
sets, the compilation time ruins the benefits of data-parallel
methods.

This paper explores the possibility of moving one level
deeper, from the C style code of Compute Unified Device
Architecture (CUDA) to assembly style Parallel Thread EX-
ecution (PTX) code. The aim of this is to reduce the compile
time so that reasonably sized data-sets can still get the bene-
fit of data-parallel evaluation speeds. Any gain in evaluation
speed would be a side benefit.

2. TMBL
The form of Evolutionary Computation (EC) used for this

paper is Tweaking Mutation Behaviour Learning (TMBL,
pronounced “tumble”), which has been proposed as a baby
sister to GP [7]. The key feature of TMBL is its focus on
long term fitness growth above all else. It is built on the
following hypothesis: long term fitness growth is dependent
on the ease with which mutations can affect an individual’s
behaviour without (necessarily) ruining its existing function-
ality. Such changes are known as tweaks.

An analogy helps motivate this hypothesis. Imagine that
you are given around a hundred toy blocks with patterns on
their surfaces so that lining them up in one particular way
makes their patterns fit together. Imagine you are asked
to solve the puzzle but only using trial and error: no pre-
planning, no writing, just considering random changes and
performing them if they improve things.

Given this challenge, you would almost certainly take the
puzzle, lay it out flat and solve it without much difficulty.
Imagine you are then given an equivalent set of blocks but
this time you must build the blocks vertically in a tower.
This would be much harder. In fact, with around a hundred
blocks, you might find it almost impossible. However much
progress is made, at some point it’s necessary to grab some
block near the bottom and ruin the prior achievements.

The argument is that the same principles hold for a GP
tree flipped upside-down: at some point changes must be
made to a node near the root of the tree and that ruins all
the nodes above it. The lower blocks in the puzzle support

the blocks above them physically; the lower nodes in the
inverted GP tree support the nodes above functionally.

What went wrong when the tower became vertical? It
became difficult to make changes to parts where progress
had been made without damaging what had already been
achieved. This view motivates the design of a representation
for TMBL that is like a form of linear GP.

Some of the features that make TMBL’s representation
distinct from standard linear GP also happen to make it
more suitable for this task. For GPU work, we want the
execution of different threads to diverge as little as possible.
Linear-style branching is bad for this but TMBL achieves
its conditionality with local if conditions that can be imple-
mented in PTX without any non-uniform branches. Stacks
are harder to implement than registers with PTX and TMBL
uses registers. The techniques used here should also suit
other forms of GP such as tree-based GP. Forms that in-
volve conditional jumps, such as some varieties of linear GP
may be experience slower evaluation speeds.

3. DATA-PARALLEL WITH CUDA C CODE
Before describing the novel PTX work, it is worth outlin-

ing the standard data parallel techniques to which it will be
compared. This research followed the precedent of much of
the recent work in the field by using nVidia’s CUDA frame-
work to exploit the GPU.

CUDA requires applications to provide a function to be
executed on the GPU, known as a kernel. The standard ap-
proach to a CUDA data-parallel system is to write, compile
and execute one or more CUDA C kernels for each batch of
individuals to be evaluated. A CUDA C file contains source
code in standard C with a few additional keywords and con-
structs. New releases of CUDA are permitting more C++
constructs in this code but for simplicity, it will be referred
to as CUDA C here.

Once the system has written out a CUDA C kernel file,
there are three steps to prepare it for execution as shown in
Figure 1. First, the CUDA C must be compiled to PTX,
which is a lower-level language, similar to machine code.
Second, the PTX code must be compiled to a “cubin” file.
In earlier versions of CUDA, the cubin file was implemented
as a text file but it is now a binary. Third, this binary file
must be loaded onto the GPU. The first and second steps are
done using the nvcc compiler; the third step is done using
the CUDA function cuModuleLoadData().

As indicated in Figure 1, nvcc permits steps 1 and 2 to
be done together and cuModuleLoadData() permits steps 2
and 3 to be done together.

Using CUDA version 3.2, the cuModuleLoadData() func-
tion (and its sister functions cuModuleLoad() and cuMod-

uleLoadDataEx()) cannot be accessed through the high-level
CUDA Runtime API but must be accessed through the
lower-level CUDA driver API.

One of the advantages of the data-parallel approach is that
it naturally leads to excellent memory access patterns that
are favourable to the fastest possible access to off-chip global
memory. This is worth highlighting because the GPU code
used in work doesn’t read test-cases but calculates them dy-
namically instead. This may make the evaluation speeds
higher than they would otherwise be but the excellent ac-
cess patterns give reason to hope this effect is small. Fur-
thermore, there is no reason to think that this effect favours
the novel techniques over the standard techniques.
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Figure 1: The steps required to compile and load
source code into a callable GPU module. The three
grey rectangles on the left represent files, as indi-
cated by the hard drive icon; the green rectangle on
the right represents a GPU module, as indicated by
the graphics card icon. These steps will be referred
to throughout the paper. The nVidia compiler nvcc

can be used to compile CUDA C-style source code
into PTX source code (step 1), to compile PTX
source code into a binary cubin file (step 2) or to
perform both steps together. CUDA driver func-
tions such as cuModuleLoadData() load an executable
GPU module from a cubin file (step 3) or from a
PTX file (by internally performing step 2 first). Ex-
isting techniques generate CUDA source files and
then apply steps 1, 2 and 3; this research investi-
gates generating PTX source code directly, hence
reducing compilation time by skipping step 1.

4. DATA-PARALLEL WITH PTX CODE
The data-parallel approach achieves very high evaluation

speeds but suffers a high compilation overhead, which must
be paid every time a new batch is to be evaluated. Step
3 from Figure 1 is relatively quick, as will be seen. The
problem lies with steps 1 and 2. The aim of this research
is to circumvent step 1 by writing the source code directly
in PTX. This should reduce the compilation time and may
even increase the evaluation speed. This requires leaving
the comfortable familiarity of C and entering the lower-level
world of PTX.

So what is PTX? According to nVidia, PTX is a“low-level
parallel thread execution virtual machine and instruction set
architecture (ISA)”, which “provides a stable programming
model and instruction set for general purpose parallel pro-
gramming.” It is a low-level, assembly-like language to which
CUDA C gets compiled and which, in turn, gets compiled to
GPU-ready binary. Unlike assembly, it does not correspond
directly to its resulting machine code binary and although it
is “designed to be efficient on nVidia GPUs” it could be im-
plemented on other parallel platforms. Importantly, the goal
of PTX stated first in the nVidia documentation is to “pro-
vide a stable ISA that spans multiple GPU generations” so it
should be forward compatible. As PTX is one of the CUDA
resources, its tools and documentation are proprietary but
freely available. It is well documented: the CUDA toolkit
v3.2 contains a 199-page PTX manual, the source of this
paragraph’s quotations.

PTX is considerably more low-level than CUDA C so
maintaining extensive PTX code would be difficult. Fortu-
nately this data-parallel approach only needs the PTX code
to describe a skeleton and the limited instruction set of the
individuals being evolved. This can be achieved with a small
code base and using a simple subset of the language.

PTX’s basic syntax rules will be familiar to programmers
of many modern languages: whitespace may be used freely
and is ignored (except in separating tokens); semi-colons
separate lines; lines beginning with a # character are pre-
processor directives and commenting rules are as for C/C++
(/* and */ mark comment blocks and // marks rest-of-line
comments).

Table 1 provides a translation from some common C tasks
to their PTX equivalents. These building blocks provide
most of the tools that are needed to construct complete
TMBL kernels. It is worth taking a look at some of the
basics of the language.

A declaration of a 32-bit unsigned integer (.u32) called
%foo is written:

.reg .u32 %foo;

For convenience, a sequence of 5 numbered %bar registers
may by declared with:

.reg .u32 %bar<5>;

The PTX code generated for the experiments described in
Section 5 used 32-bit floating point numbers (.f32) for the
evaluation’s native type, 32-bit unsigned integers (.u32) for
some of the admin and a few Boolean predicates (.pred) for
condition testing.

A typical instruction comprises three parts: the action
to perform, qualified by the register type; the destination
register and the source registers. For example, the code to
set %bar1 to the result of a 32-bit floating point addition of
%bar2 and %bar3 is:

add.f32 %bar1, %bar2, %bar3;

Conditional execution is achieved in two steps: one in-
struction sets a predicate register according to some test
and then a second instruction conditionally executes if that
register is set to true. For example, to branch (ie goto)
$codeLocationBaz if (%bar3==%bar1) the code might be:

setp.eq.u32 %predicateVar, %bar3, %bar1;

@%progBranchPred bra $codeLocationBaz;

The GPU architecture is designed to execute the same
instruction in parallel on multiple data. Although CUDA
permits divergence of neighbouring threads, the documen-
tation emphasises the considerable time penalty this entails.
Hence, to maximise speed, good CUDA code should min-
imise any such divergence.

This raises the question of whether directly-coded PTX
is faster or slower than the intermediate PTX generated
from CUDA C source by the nvcc compiler. On one hand,
the PTX that nvcc generates from CUDA C will have all
the execution speed advantages that nVidia’s compiler pro-
grammers could muster. On the other hand, directly-coding
PTX might allow greater control than is possible through
compiling CUDA C. For instance, where the compiler can-
not identify that divergence is impossible, it may generate
PTX with avoidable divergences.
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Description CUDA C code PTX code

Set to constant slot0 = -1.64101672f; mov.f32 %slot0, 0fBFD20CD6; // -1.64101672

Add slot4 += slot3; add.f32 %slot4, %slot4, %slot3;

Subtract slot1 -= testcase0; sub.f32 %slot1, %slot1, %testcase0;

Multiply slot0 *= slot3; mul.f32 %slot0, %slot0, %slot3;

Safe divide

slot2 = ( div.full.f32 %slot2, %slot2, %slot3;
(slot3 == 0.0f) ? setp.eq.f32 %divPred, %slot3, 0f00000000;
0.0f : slot2/slot3 selp.f32 %slot2, 0f00000000, %slot2, %divPred;

)

Test subtract
if (slot2 > 0) { sub.f32 %ifTemp, %slot0, %testcase1;
slot0 -= testcase1; slct.f32.f32 %slot0, %ifTemp, %slot0, %slot2;

}

Test safe divide

if (slot0 > 0) {
slot3 = ( div.full.f32 %ifTemp, %slot3, %slot2;

(slot2 == 0.0f) ? setp.eq.f32 %divPred, %slot2, 0f00000000;
0.0f : slot3/slot2 selp.f32 %ifTemp, 0f00000000, %ifTemp, %divPred;

); slct.f32.f32 %slot3, %ifTemp, %slot3, %slot0;
}

Loop

unsigned int iter=0; mov.u32 %iterCtr, 0;
while(iter<noIters) { $startOfLoop:
... ...
... add.u32 %iterCtr, %iterCtr, 1;
++iter; setp.ne.u32 %loopPred, %noOfIters, %iterCtr;

} @%loopPred bra.uni $startOfLoop;

Program choice

if (progId==0) { mov.u32 %progComp, 0;
.. setp.eq.u32 %progPred, %progId, %progComp;

} @%progPred bra.uni $prog0;
else if (progId==1) { mov.u32 %progComp, 1;
.. setp.eq.u32 %progPred, %progId, %progComp;

} @%progPred bra.uni $prog1;
$prog0:

..
bra.uni $endCode;

$prog1:
..
bra.uni $endCode;

$endCode:

Table 1: A comparison of the CUDA C and PTX code used to perform various tasks. Adjacent blocks of
code perform equivalent tasks but adjacent lines within them may not. The float literals in the CUDA C use
a trailing f to request floats explicitly, which stops the compiler grumbling about demoting doubles. Float
literals in PTX must be specified in native hexadecimal so a trailing comment is used to provide a decimal
equivalent for readability.

PTX offers its programmers two divergence-minimising
tools:

• explicit conditional instructions (such as selp and slct

in Table 1), which are executed by all threads but
which conditionally perform some limited action de-
pending on a predicate and

• a qualified branch instruction bra.uni, which indicates
that a branch is guaranteed to be non-divergent.

By using the former, it is possible to code many tasks
with no conditional execution and hence no possibility of
divergence. By using the latter, it is possible to guarantee
to the compiler that many of the remaining branches will
be uniform. What is the effect of this? The PTX manual
ptx_isa_2.2.pdf has the following to say:

A CTA [“Cooperative Thread Array”] with diver-
gent threads may have lower performance than a
CTA with uniformly executing threads, so it is
important to have divergent threads re-converge

as soon as possible. All control constructs are as-
sumed to be divergent points unless the control-
flow instruction is marked as uniform, using the
.uni suffix. For divergent control flow, the opti-
mizing code generator automatically determines
points of re-convergence. Therefore, a compiler
or code author targeting PTX can ignore the is-
sue of divergent threads, but has the opportu-
nity to improve performance by marking branch
points as uniform when the compiler or author
can guarantee that the branch point is non-divergent.

This leaves unclear precisely how much speed improve-
ment (if any) might be available by avoiding non-uniform
branches. In turn, this leaves open the question of whether
avoiding non-uniform branches produces faster code (and
indeed of whether writing PTX directly can produce faster
kernels at all).

Nevertheless, care was taken to try to minimise the num-
ber of non-uniform branches in case there was a potential
speed benefit. To achieve this, the design assumes that there
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are enough test-cases (with appropriate padding) such that
CUDA thread blocks (or at least warps) only evaluate data
for one individual. If the number of test-cases is so low
that this is a problem, population-parallel approaches would
likely be more appropriate anyway. If this assumption is vi-
olated, the code will attempt to diverge at a branch labelled
as uniform. The consequences of this are unknown.

So did this effort actually manage to reduce non-uniform
branches in the directly-generated PTX? To highlight the
difference, the same population of 128 individuals, each with
200 TMBL instructions, was output as a PTX file and as a
CUDA C file, which was then compiled to a PTX file using
nvcc. The directly-generated PTX contained 384 branch in-
structions, all of which were uniform. The PTX compiled
from CUDA C contained 5205 branch instructions, 3092
(around 59%) of which were non-uniform.

It is worth noting that, although PTX looks like assembly,
compiling it to a cubin file is not a matter of direct transla-
tion. This can be seen by passing the --ptxas-options=-v

option to nvcc which causes verbose output. This shows
that the compiler often uses far fewer registers than are di-
rectly implied by the PTX source.

5. EXPERIMENTS
The tactic of using PTX introduces more complexity and

so can only be justified if it either reduces compile times or
improves evaluation speeds (or both). This section describes
experiments to test this. Since the purpose of the work was
to implement the same algorithm using faster techniques,
the experiments examined speed, not results. Tests verified
that the method generated results equal to those generated
by standard methods.

The initial experiments appeared to give wildly varying re-
sults. On further investigation, the reason for this was found
to be nvcc’s optimisation capabilities. When compiling from
CUDA C to PTX, nvcc spotted dead instructions that could
never affect the output and optimised them away. This re-
sulted in the compilations and evaluations from CUDA C
code occasionally being extremely fast.

TMBL evolves individuals with very few dead instructions
so the experiments were seeded with a TMBL individual
evolved during a long run. This means that this issue does
not affect these experiments. However it is worth underlin-
ing this point: using PTX appears to sacrifice the optimisa-
tion of inactive code. This might be more of a problem in
the context of GP’s infamous introns.

To generate individuals with fewer instructions, instruc-
tions were removed from the start of the seed individual.
This may change the individual so that more of the instruc-
tions may be optimised away. Hence the evaluation rates
stated for CUDA C source for low numbers of instructions
may be overestimates.

The system configuration is provided in Table 2 and the
default parameters are provided in Table 3. The last three
entries refer to the process used to assess evaluation speed.
This involved timing eight consecutive launches of kernels,
each executing the entire population for 50 iterations over
65536 test-cases. For a standard population of 120 individu-
als, each with 200 TMBL instructions, this means executing
0.6291456 × 1012 TMBL instructions.

The mutation rate was set such that 95% of individuals
have at least one mutation. For individuals with 200 instruc-
tions, this translates to a rate of 1.487% by instruction.

Operating system Ubuntu Linux 10.10
Linux Kernel 2.6.35-28-generic-pae
GPU Device nVidia GeForce GTX 260 (Core 216)
CUDA toolkit v3.2
Device driver 260.19.44
NVCC v0.2.1221

Table 2: The system configuration

Number of CPU threads 1
Individuals per kernel 8
Number of individuals 120
Number of instructions 200
Number of evaluation repeats 8
Number of test-cases per evaluation 65536
Number of iterations per evaluation 50

Table 3: Default parameters for the runs

Each experiment averaged results over five repetitions.
The lines on the graphs in Section 6 all have a bar behind
them indicating the mean plus and minus one estimated
standard error. This bar is often too thin to be visible. This
suggests that the relatively small number of repetitions has
been adequate to give good estimates of the means.

6. RESULTS
In discussing the results it would be useful to work with

a couple of assumptions: that performing the compiling and
loading steps in pairs (1 + 2 or 2 + 3) does not massively
affect the duration and that the load time is small enough
to disregard. The validity of these assumptions is checked
in Figure 2. In both cases, the values are plotted over vary-
ing number of individuals per kernel although this is not
too important in either case. Figure 2(a) shows that per-
forming the steps in pairs does not massively affect the du-
ration. Pairing steps 2 and 3 appears to slightly increase
the duration but this effect is minor and will henceforth be
disregarded. Figure 2(b) shows that the load times are very
short (compared to compile times from other experiments)
and so will be disregarded for the rest of the analysis.

Figure 3 considers the effect of varying the number of
individuals per kernel on evaluation speed and compile time.
Figure 3(a) shows two striking results: that the evaluation
speeds are remarkably high and that they are even higher
from PTX source code. The results are fairly steady across
varying numbers of individuals per kernel.

It is very positive that the PTX can achieve higher eval-
uation speeds but the main aim was to reduce compilation
time. Figure 3(b) shows that this has been achieved effec-
tively too. Complete compile time per individual to generate
a cubin is much lower for PTX than for CUDA C and this
effect intensifies as the number of individuals per kernel in-
creases. Interestingly the compile time for CUDA C from
PTX to cubin suggests that the reduction in compile time
is only partly explained by avoiding step 1. Presumably the
rest is due to the directly-generated PTX being simpler than
the PTX that nvcc generates from equivalent CUDA C.

Figure 4 shows the effect of varying the total number of
programs on evaluation speed and compile time. As would
be hoped, neither is hugely affected. However compile times
per individual for CUDA C source do vary slightly, with the
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time to cubin higher for particularly small or large popula-
tions.

Figure 5 shows the effect of varying the number of in-
structions per TMBL individual. Figure 5(a) shows that
for individuals with 90 or more instructions, the evaluation
speeds are fairly steady and the evaluation speeds from PTX
are consistently higher than those from CUDA C. At 300
instructions, the evaluation speed is 155837.159 million op-
erations per second from CUDA C and 191724.434 million
operations per second from PTX, an increase of 23.029%.
Decreasing to 60 and then 30 instructions, both evaluations
speeds get higher and at 30 instructions, CUDA C is faster
than PTX.

Figure 5(b) shows that the compile time to cubin per in-
dividual is much lower for PTX than for CUDA C for all
numbers of instructions. For both PTX and CUDA C, the
compile times per individual appear to be increasing more
than linearly with respect to the number of instructions.
This might be because the order of the compiler’s algorithm
is worse than linear; it might be because of demand on lim-
ited resources such as memory. At 300 instructions, the total

compile time per individual is 0.473 seconds from CUDA C
and 0.081 seconds from PTX, a decrease of 82.938%.

Figure 6 shows the effects of compiling with multiple threads
on a 4 core machine. In all cases, compile time per individ-
ual increases when using multiple threads. This effect is not
strong enough to prevent parallel compilation being worth-
while but it is somewhat disappointing.

7. CONCLUSION
This paper described an investigation into using the low-

level language PTX for data-parallel GPU evaluation, rather
than the more standard CUDA C. An initial consideration
of the idea revealed that PTX is a forward compatible, well-
documented language, usable enough for small code bases
such as data-parallel kernels. An implementation of the idea
demonstrated two advantages to the approach, illustrated
here with values derived from individuals of 300 instructions:

• considerably shorter (5.861×) compile times;

• higher resulting evaluation speeds (+23.029%).
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Figure 4: The effect of varying population sizes for CUDA C and PTX
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Figure 5: The effect of varying numbers of TMBL instructions per individual for CUDA C and PTX

This satisfies the aim of making data-parallel evaluation
speeds accessible for moderately sized data-sets. Yet there
is a price to be paid for these benefits:

• PTX is more complicated to develop and less readable
than CUDA C.

• The PTX documentation is probably not as extensive
as the CUDA C documentation and there is probably
less PTX expertise available through CUDA forums.

• Compilation from PTX does not appear to optimise
away dead code. This problem can be avoided by per-
forming intron removal before evaluation.

Hopefully the findings described here will help researchers
to understand these factors better and so permit them to
gauge the suitability of PTX more accurately. A number of
questions remain open for future investigation:

• Is it possible to improve the directly-coded PTX by
manual comparing it to the PTX that nvcc generates
from CUDA C?

• Is it possible to increase the number of instructions
with a linear increase in compile time?

• Is it possible to increase the number of parallel compi-
lations with a smaller time penalty?

• Do the uniform branches contribute to the improved
execution speed?

Beyond this, there are two obvious possibilities to pursue:
using PTX to write a population-parallel interpreter and
directly manipulating a data-parallel cubin binary. Despite
the success of the work described in this paper, these remain
daunting prospects.

With work, a PTX interpreter might be possible and it
might be expected to deliver a small improvement in eval-
uation speed. However this does not seem worth the huge
increase in the difficulty of developing and maintaining the
code.

Attempts to directly manipulate cubin binaries may be
unwise because nVidia recommend storing CUDA C or PTX
source files rather than cubin binaries to defend against any
radical changes they may make to the cubin format. Nev-
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ertheless, if it were possible to manipulate the cubin files
directly rather than having to compile afresh each time, this
might slash the CPU time spent preparing each individual
for GPU evaluation. This aspiration motivated a brief inves-
tigation using the Python program decuda, which attempts
to disassemble cubin files back to PTX code. This quickly
revealed a complex relationship between PTX and the cu-
bin file to which it compiles. The investigation was promptly
curtailed.
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