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ABSTRACT
Medical decisions are often difficult; they involve uncertain
information, multiple-objectives and debatable outcomes.
In this work, we discuss the application of the multi-reward
partially-observable Markov decision process (MR-POMDP)
and NSGA2-LS, a hybridised multi-objective evolutionary
solver, to two problems in the medical domain: anthrax re-
sponse and smart-wheelchair control. For the first problem,
we use a discrete model and analyse the trade-offs between
the best solutions (in the form of finite-state controllers)
found by our evolutionary algorithm. For the second, we
contribute an extension of our method to the continuous
space and optimising recurrent neural networks (RNNs) for
use on medical robots such as smart wheelchairs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Optimization]: Stochastic
programming

General Terms
Algorithms

1. INTRODUCTION
Medical professionals often have to make decisions under

uncertainty and with multiple criteria or objectives to con-
sider. For example, during the early stages of a possible
anthrax outbreak, information is scarce and available data
may be unreliable. If the only objective was to minimise the
loss of life in the short term, a “trivial” solution would be to
spare no expense in distributing antibiotics, shutting down
each potential exposure zone and containing all individuals
suspected of being infected. However, in the real-world, eco-
nomic and long-term societal costs are also important; one
has to consider the probability that an outbreak really exists
and what happens post hoc.
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In medical robotics, we observe a similar general prob-
lem when trying to program intelligent controllers for smart
wheelchairs; the user’s preferences or desires when manoeu-
vring around his environment are often not known in ad-
vance. Furthermore, mechanical and electronic components
can fail and the controller has to compensate for slipping
wheels and sensor failure. An analogous problem also exists
in diagnosis and treatment; tests are not 100% accurate,
treatments can be costly and still fail. These examples are
emblematic of the difficulties caused by multiple-objectives,
incomplete information and ineffective actions, common in
the health-care domain.

In prior work [18], we introduced the multi-reward partially-
observable Markov decision process (MR-POMDP) as a gen-
eral framework for modelling such problems. MR-POMDPs
offer a convenient “language” for modellers who need to con-
sider both multiple objectives and uncertainty. The solution
for a MR-POMDP is not a single policy but the Pareto pol-
icy set: a set of “best” policies that maximise objectives to
varying degrees.

While our previous paper mainly described performance
results, this work focusses on MR-POMDPs for two medical
problems. The emphasis is on analysing the the Pareto-
policy set and solutions found by our evolutionary solver.
We first study the multi-criteria anthrax response problem;
after a qualitative discussion of the best found solutions, we
extract selected candidate policies and simulated their exe-
cution on hypothetical anthrax outbreaks. We then discuss
the expected trade-offs when applying such policies and con-
siderations when using them as starting-points for designing
practical solutions.

Second, we contribute an extension of our method to con-
tinuous state spaces by evolving recurrent neural networks
(RNNs) as controllers for mobile robots, in particular smart
wheelchairs. Our goal was to have the robot respond to user-
preferences related to driving speed and power-consumption.
We evolved non-dominated policies in simulation, transferred
them on to a Pioneer P3-AT robot and performed a quanti-
tative analysis on the driving behaviours of selected policies
on a “shuttle-run” problem. With a Pareto optimal set of
controllers, we envision smart wheelchairs that are able to
change their behaviour“on-demand”to adapt to higher-level
preferences.

In the next section, we briefly review the MR-POMDP
and finite-state controllers (FSCs). In Section 2.4, we dis-
cuss our hybridised multi-objective evolutionary algorithm.
Our analysis of the multi-criteria anthrax response problem
is given in Section 3. Section 4 discusses additional prelimi-
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nary results on optimising RNNs for continuous spaces and
our proposed policy-switching method. We conclude with
final remarks and future work in Section 5.

2. BACKGROUND
In this section, we briefly review the MR-POMDP, finite

state controllers and our hybrid multi-objective evolutionary
algorithm. We refer readers wanting more detail to [18].

2.1 The MR-POMDP Model
A MR-POMDP models an environment where states are

not directly visible to an agent [12]. Instead, the agent
makes observations, from which it has to infer actions to
take. Depending on the underlying state and the action,
the agent receives feedback in the form of a vector -valued
reward; in standard POMDPs, agents only receive scalar -
valued rewards.

Formally, a MR-POMDP is a tuple 〈S,A,Z, T,O,R, γ〉
where S is the set of states, A is the set of possible ac-
tions and Z is the set of observations available to the agent.
T is transition function T (s, a, s′) = P (s′|s, a) which gives
the probability of moving to state s′ from s given action
a and O is the observation function O(s, z) = P (z|s) i.e.
the probability of observing z in state s. R is a vector
of reward functions R = [R(1), R(2), . . . , R(M)] where each

R(i) : S × A × S → R models the reward for arriving in
state s′ after executing action a in state s under objective
i. Finally, the discount factor, γ (0 ≤ γ ≤ 1) regulates how
much future rewards are discounted1.

Since observations only give partial information about the
current state, an agent has to rely on the complete history
of its observations and actions. We define a finite history
as ht = {ao, z1, . . . , at−1, zt} ∈ H where at and zt are the
action and observation at time t respectively. A policy π
maps elements of H to actions a ∈ A (or a distribution of
actions in the case of stochastic policies). That is, policies
tell an agent what to do based on what it has seen up to
that point. In this work, we seek policies that maximise the
expected cumulative discounted reward for each objective:

maxE

( ∞∑
t=0

γtR
(i)
t | π,b0

)
for i = 1, 2, . . . ,M (1)

where R
(i)
t is the reward received at time t under reward

function R(i), M is the number of objectives and b0 is a
given distribution over the starting states.

2.2 The Pareto Policy Set
With multiple rewards, the value of a given policy is a

vector Eπ = [E
(i)
π ] where E

(i)
π gives the value of the policy

under reward function R(i). To determine the optimal policy
(or policies), we need to be able to compare policy value
vectors.

Intuitively, a policy is preferred over another if it possesses
a higher value for at least one objective, and is no worse
for all others. Formally, a policy πk dominates policy πl,
denoted as πk � πl, if at least one of its value functions p
is strictly better than that of policy l and none of its value

functions are worse i.e. E
(i)
πk ≥ E

(i)
πl for all i = 1, . . . ,M and

there exists p such that E
(p)
πk > E

(p)
πl . In contrast, if E

(i)
πk ≤

1For simplicity, we assume discount factors are equal across
rewards
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Figure 1: An illustration of dominance on a bi-
objective problem. A, B and D are non-dominating
solutions on the Pareto optimal front. C is domi-
nated by B and D, but is not dominated by A.
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Figure 2: A FSC with three nodes {N1, N2, N3}, two
actions {a1, a2} and two observations {o1, o2}. For
each node, the action taken is governed by the prob-
ability distribution ψ(n, a) = P (a|n) . The transition
from one node to another is dictated by another
probability distribution η(n′, z, n) = P (n′|z, n). In this
example, the probability of taking action a1 in node
N1 is 0.2, after which a transition occurs depending
on the observation received. If observation o1 is re-
ceived, a transition is made to N2 with probability
0.4 or to N3 with probability 0.6.

E
(i)
πl for all i and there exists p such that E

(p)
πk < E

(p)
πl , then

we say πk is dominated by πl, denoted πk ≺ πl. Otherwise,
πk and policy πl are non-dominating, πk ∼ πl.

Given the above definitions, the best policies, π∗
k ∈ P

∗
,

are those that are not dominated by any other policy; there
does not exist πl such that πl � π∗

k. We call these policies
Pareto-optimal and P

∗
is the Pareto optimal set. The set

of all value vectors for the policies in the Pareto optimal
set is called the Pareto optimal front, E

∗
= {Eπ∗}. Fig. 1

illustrates the concept of dominance and a sample Pareto
optimal front.

Given a MR-POMDP, our goal is to find the Pareto op-
timal set of policies or Pareto-policy set (PPS). That said,
we have not made clear what form or representation such
policies should take. In this work, we begin with policy-
search for finite-state controllers (FSCs) and later, consider
recurrent neural networks (RNNs).
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2.3 Finite State Controllers
A finite state controller (FSC) is a graph-based represen-

tation of a policy. Each node (also called a “memory state”)
dictates an action to take and depending on the observa-
tion received, we transition to another node in the graph
(which defines the next action to be taken and so on). We
work mainly with stochastic FSCs where each node defines
a probability distribution over possible actions and nodes to
transition to. As an example, a three-node FSC is shown in
Fig. 2.

2.4 Multi-Objective Hybrid EAs
In [18], we introduced two hybrid multi-objective evo-

lutionary algorithms (MOEAs) based on NSGA2 [16] (as
a representative of MOEAs using standard real-coded re-
combination and mutation operators) and MO-CMA-ES [9],
which represented the more recent estimation of distribution
(EDA) class of methods. In this work, we focus on the hy-
bridised NSGA2 algorithm (NSGA2-LS) as it was the best
performing method in our experiments.

NSGA2-LS is a memetic “steady-state” version of NSGA2
that incorporates a specialised local-search operator for FSCs.
Similar to other MOEAs, NSGA2-LS iteratively generates
new solutions using the simulated binary crossover (SBX)
and polynomial mutation operators [16]. At each iteration,
the population (together with the offspring) are sorted us-
ing a fast non-dominated sorting algorithm. Each solution
is assigned a rank (lower ranks are better) and a second
preference criteria, crowding distance, which approximates
the density of solutions around the individual. NSGA2-LS
is elitist in that it preserves only the top |P| solutions in
the population P at each iteration. In addition, NSGA2-LS
uses a dynamic operator selection scheme based on operator
rewards similar to [1]. Intuitively, we want more successful
operators to be used more frequently. The reward given to
each operator is a cost-benefit ratio where the “benefit” of
using a particular operator is defined as the proportion of
solutions the offspring is better than relative to its parent
and the “cost” is simply the processing time used by the
operator.

2.4.1 FSC Representation
Each FSC is represented with a vector (genome) x ∈

R
|N||A|+|N|2|Z|. There are two segments to this genome for

the action selection distribution ψ(n, a) and node transition
distribution η(n, z, n′) respectively. We refer to segments of
the genome by xψ and xη. To ensure that probability dis-
tributions remained valid and the resulting evaluation func-
tion was differentiable, we use the soft-max function, e.g.
ψ(n, a) = P (a|n,xψ) = exp (xψ[n, a])/Q where xψ[n, a] is
the associated variable for ψ(n, a) and Q is the normalisa-
tion factor.

2.4.2 Hybridisation with Local Search
The FSCs we are attempting to optimise are large in the

number of parameters; as stated, the genome consists of
|N ||A|+ |N |2|Z| real variables. Multi-objective EAs may be
slow to converge in such large search spaces and may not find
solutions with sufficient precision. A potential solution to
this problem are hybrid or memetic algorithms [13, 14] that
combine MOEAs with local-search methods; the intuition
being that local-search can quickly locate good solutions
that the evolutionary operators can build upon. We hy-
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Figure 3: The approximate Pareto policy set for the
multi-criteria anthrax problem with three objectives
to minimise: the loss of life (x-axis), the number of
false alarms (y-axis) and the cost of investigation
(size of circle).

bridised both NSGA2 and MCMAwith gradient-based local-
search as an operator and to keep our search computationally-
feasible, we transformed the MR-POMDP to a POMDP
with reward function Rw using a weighted-linear combina-
tion approach2. We use a weight vector w drawn from a uni-
form distribution and apply an efficient conjugate-gradient
method [7] until convergence or for a maximum of 5|x| iter-
ations.

3. MULTI-CRITERIA ANTHRAX
RESPONSE

The problem of anthrax outbreak detection was formu-
lated as a POMDP by Izadi and Buckeridge [10] alongside
public health experts. This POMDP is comprised of six
states (“normal”, “ outbreak day 1” to “outbreak day 4” and
“detected”) with two observations (“suspicious”and“not sus-
picious”), four actions (“declare outbreak”, “review records”,
“systematic studies”and“wait”) and a relatively complex re-
ward function that combined the economic costs from multi-
ple sources such as productivity loss, investigative costs, hos-
pitalisation and medical treatment. We refer readers to [10]
for complete details of the POMDP and the results found
using a single reward function.

In our multi-objective formulation, we have three objec-
tives to minimise: loss of life (Rl), number of false alarms
(Ra) and cost of investigation (in man-hours, Rm). The loss
of life is a cumulative cost based on the number of deaths
in the event of a real outbreak. The number of false alarms
increased by one when an outbreak was wrongly declared
and finally, the cost of investigation is computed based on
the man-hours spent on reviewing records and systematic
studies (systematic studies were more intensive and hence,
more costly).

We evolved solutions using NSGA2-LS (15 runs, 3600 sec-
onds of computational time for each run) and extracted a
final non-dominated set as our approximate Pareto policy
set (PPS). Note that we do not claim these to be optimal
solutions but instead, consider these solutions to be starting
points for developing real-world policies.

2Transformation details in [18]
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Figure 4: Seven policies from the Pareto policy set
simulated over 5000 days. Error bars show the stan-
dard deviation across 50 iterations. Size of the bub-
bles indicate the number of man hours spent in in-
vestigative costs. The dashed line is a linear function
fitted to the ratio of false alarms v.s. the number of
lives lost (in thousands) to real outbreaks. We no-
ticed a negative linear relationship between the loss-
of-life to the number of false alarms; for every 1000
lives gained, we would have to tolerate an increase
of approximately 1.5 in the ratio of false alarms to
outbreaks.

3.1 Qualitative Analysis
Let us begin with a qualitative analysis of the PPS (shown

in Fig. 3) and discuss the overall trade-offs between the
different policies. We observe that the front consists of three
“pieces”, each with a seemingly linear trade-off between Rl

and Ra.
As stated in the introduction, if one only wishes to min-

imise the loss-of-life, a trivial solution is to declare an out-
break whenever one is asked; no man-hours need to be spared
(the number of lives lost is still non-zero as although an out-
break may be declared, the original infected may not sur-
vive). One observes this policy at the left extremum of the
graph where as expected, the number of false alarms is at a
maximum.

At the other end of the Pareto-policy front, we observe an-
other trivial policy: we can get away with declaring no out-
breaks (simply by waiting) and thereby reducing the number
of false-alarms to zero. But as we might expect, the loss-of-
life is at the maximum.

For real-world use, we consider the most interesting part
of the PPS is “middle” portion between these two extremes,
where some work is required to balance the two objectives
Rl and Ra. We can decrease the number of false alarms
at the expense of more investigative hours, illustrated by
the size of the circles. From the plot, there appears to be
a linear increase in the number of hours required to reduce
the number of false alarms without drastically increasing the
loss of life. Of course, there are trivial policies that simply
toss a (biased) coin as to whether to declare an outbreak or
not but those do not perform as well as those that make use
of our dual tools of systematic studies and record reviews.

3.2 Selected Policy Simulation and Compar-
isons

We selected seven different policies along the middle por-
tion of the policy front (blue area in Fig. 3) and simulated

H2H1

H4

H3

A1-2

Z1-5
Laser 

Scanner

Actuators

Figure 5: A RNN with four hidden nodes
{H1, . . . , H4}, two action nodes {A1, A2} and five ob-
servational nodes {Z1 . . . , Z5}. The action and ob-
servational nodes represented as single nodes each
since the compositional nodes do not interact. The
directional dashed lines are associated with a single
weight variable where-else the bi-directional solid
lines are associated with two weights. Note that
hidden nodes also have self-loops.

the policies over the course of 5000 days (similar to [10]).
Each simulation was repeated 50 times and the number of
lives lost, false alarms and investigative man-hours were av-
eraged over the runs. Fig. 4 shows the results obtained.

As before, we observe a linear relationship between the
number of false-alarms and total number of lives lost. A fit-
ted linear function (dashed line) shows that for every 1000
lives gained, we would have to tolerate an increase of approx-
imately 1.5 in the ratio of false alarms to outbreaks. Another
detail to consider is that there is a significant variability in
the outcomes across the simulations with the same policy.
This is to be expected since stochasticity and unknown vari-
ables play a significant role. That said, the MR-POMDP
model and the PPS allow us to consider these aspects to
make informed judgements about which policy would best
suit societal values.

4. CONTINUOUS SPACES AND POLICY
SWITCHING FOR MEDICAL ROBOTS

Moving beyond discrete-space test problems [18], we ap-
plied our method to more a complex multi-reward scenario
with continuous observation and action spaces. In particu-
lar, we were interested in generating “inverse-models” that
produce velocity commands (both translational and rota-
tional) in a shared-control system on a smart wheelchair [3,
17]. Prior work focussed on optimising safety but we wished
to model situations where users may have two additional,
conflicting, goals: speed and power consumption.

4.1 Recurrent Neural Networks (RNNs)
Since FSCs do not generalise easily to continuous domains,

we optimised policies in the form of recurrent neural net-
works (RNNs) with sigmoidal activation functions. RNNs
are similar to the canonical feedforward artificial neural net-
works except that feedback connections are present. This
allows RNNs to exhibit complex temporal behaviour using
internal memory states. An example RNN is shown in Fig.
5.

Both FSCs and RNNs are graph-based policy representa-
tions, hence only minor modifications to our MOEA was re-
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Figure 6: The real-world (left) and simulated (right)
obstacle course for the Shuttle-Run Problem. The
robot has to race between S and G repeatedly, not
bump into obstacles and conserve power. This prob-
lem is partially observable with continuous state, ob-
servation and action spaces.

quired. Each RNN is a vector x ∈ R
|NH |(|NH |+|A|+|Z|) where

NH is the set of hidden nodes, A is the set of actions and
Z is the set of observations. The most substantial change
was in the local-search algorithm; since gradient information
was not easily obtained, we opted for a simple greedy local-
perturbation search where solutions undergo 100 iterations
of polynomial mutation and evaluation. Future work would
involve other learning algorithms such as back-propagation
through time [15].

For this experiment, we optimised fully-recurrent RNNs
of up to 4 hidden nodes. Our test platform was Art: a
Pioneer P3-AT equipped with a SICK laser. The laser’s
maximum range was limited to 4 meters and its field of view
was divided into five segments with the minimum reading in
each segment fed into Art’s RNN. The RNN outputs two
values: the robot’s desired speed and turning rate. Note
that Art’s translational and turning speed were capped at
0.6m/s and 1

4
πrad/s respectively. Given these parameters,

|A| = 2, |Z| = 5 and |NH | = 4, we have 44 real-valued
variables to optimise.

4.2 The Shuttle-Run Problem
Our main aim in this test was to determine if NSGA2-LS

was able to successfully optimise RNNs for use in a real-
world environment. As a proof-of-concept, we designed a
“shuttle-run” problem where the objective was to race to
the end of a corridor and back again repeatedly within a
specified time period. However, there are two additional
considerations: the robot is not allowed to hit any obstacles
and power consumption should be minimised.

This problem can be modelled by a MR-POMDP with
three reward functions. This first objective is modelled by
R(1) whereby Art earned a reward of 1000 each time it
reached the (alternating) goal positions. To prevent plateaus
on the fitness surface, Art was given an additional 1/(1+dG)
reward at the end of each trial, where dG is the distance to
the next goal. The second reward function R(2) modelled
driving safety and Art received a penalty of 1000 each iter-
ation it was in contact with an obstacle. The third reward
function R(3) modelled power consumption. For this proof-
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Figure 7: Best solutions for the Shuttle-run problem
found after 2.5× 106 evaluations. As expected, there
is a trade-off between the number of laps achieved
and power consumption. At the extrema, the robot
is able to make 13 laps (with high power consump-
tion) or only a single lap by conserving power.

of-concept, we used a simplified power usage model where
Art received a negative reward of αv+βω where v and ω are
the robot’s translational and angular velocity respectively.
In our experiments, we set α = β = 5. Also, to prevent so-
lutions where the robot simply remains still, a large penalty
is given to solutions which do not complete any laps.

To simulate the runs needed to evolve the RNN, we used
the Player-Stage framework [6]. The simulated obstacle
course is shown in Fig. 6 and each evaluation lasted 20,000
iterations (≈ 15 minutes in real-time).

4.3 Results
The best non-dominating solutions after 2.5 × 105 eval-

uations are shown in Fig. 7. The (simulated) P3-AT was
able to complete a maximum of thirteen laps. Interestingly,
the policy with the smallest power use did so not by mov-
ing slowly through the course but instead, by coming to a
complete stop after finishing a single lap.

We transferred the RNNs onto Art and created a similar
(but not identical) real-world obstacle course (Fig. 6). We
conducted six three-minute trials using policies A, B and C
(Fig. 7). There was little variation between different runs of
the same policy and we observed that all three policies were
sufficiently general to navigate the real-world course without
bumping into obstacles. However, real-world speeds were
slower than simulation, possibly due to surface friction.

Policies A, B and C completed an average of 2, 2.6 and
2.83 laps respectively. Policy A took slower, more careful
turns and slowed down ahead of obstacles (median speed
of 0.23 ms−1). In contrast, C featured more “aggressive”
driving with a median speed of 0.42 ms−1. Finally, pol-
icy B drove in a balanced manner, with a median speed of
0.34 ms−1. The difference in behaviour can be seen in Fig.
8 showing distributions of translational and turning speeds
achieved by policies A, B and C.

4.4 Policy Switching on-Demand
To test policy-switching, we designed a policy-selection

mechanism that chooses actions based on user-defined pref-
erences. In this system, the input is fed to a set of non-
dominated policies. The policy selector picks the policy with
normalised values closest (in terms of Euclidean distance) to
the user-defined preference vector w and sends the associ-
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ated action to the actuators. For this experiment, w was
simply the desired trade-off between speed and power con-
sumption (since we disregarded policies which hit obstacles).

We allowed Art to drive continuously in the obstacle course
for 40 minutes but policies were changed from A to C to B
in the middle of the course at varying intervals. Art com-
pleted 33 laps and the (smoothed) velocity profiles in Fig. 9
clearly show a difference in driving behaviour after changes
in policy. In a second experiment, we ran Art for 3 minutes
but with policies from the entire non-dominated set inter-
leaved at 10 second intervals. In both experiments, policies
were successfully changed mid-way through the course with-
out incident (no obstacles were hit), demonstrating that it
is possible to adaptively change policies “on-the-fly” based
on top-down preferences.

4.5 Transfer to Smart Paediatric Wheelchairs
In the UK alone, there are more than 50,000 disabled chil-

dren who require mobility assistance [4] and power mobility
advocates consider mobility as “an essential component of a
child’s early intervention program” [2, 11]. In our current
research, we are developing a safe, paediatric wheelchair we
call the Assistive Robot Transport for Youngsters (ARTY)
[19] shown in Fig. 10.

In brief, ARTY is a children’s powered wheelchair aug-

Figure 10: The ARTY Smart Wheelchair.

mented with sensors (both IR and sonar-based) and a mini-
PC (the extended capabilities module) as the main compu-
tational platform for localisation, obstacle avoidance, path-
planning and intention prediction. Thanks to its modular
design, ARTY accepts a wide range of input and sensor de-
vices (via CANBus or USB), important for catering to a
wide range of disabilities. Using ARTY, we are currently
evolving new policies that account for varying disabilities
and the three aforementioned objectives of safety, power-
consumption and speed, as well as developmental objectives.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented the MR-POMDP and the

NSGA2-LS algorithm for modelling and solving multiple-
objective problems with uncertainty in the medical domain.
We demonstrated the applicability of our method to two
problems; multi-criteria anthrax response and a shuttle-run
problem.

With the the anthrax problem, we illustrated how the
Pareto policy set can be used to better understand the trade-
offs between policies. We observed that MOEAs are capa-
ble of finding both “trivial” policies and complex ones that
can be used as the foundation for building real-world so-
lutions. As an extension of our prior work, we optimised
RNNs using the Stage simulator and successfully transferred
the policies on to a Pioneer P3-AT robot. We observed on a
real-world “shuttle-run” experiment that the non-dominated
policies expressed qualitatively and quantitatively dissimilar
driving behaviours.

An issue with our current MR-POMDP formulation is
that we seek to maximise the expected cumulative discounted
rewards. This may not be entirely appropriate for certain
problems; e.g., is a future life worth less than present one?
A potential solution may be to maximise policies using a
different criteria such as the cumulative average reward. In
addition, we have mainly dealt with small problems; work
needs to be done to examine the use of MOEAs and MR-
POMDPs for larger, more complex problems and using other
policy representations, such as biologically-inspired hierar-
chical architectures [5] or bayesian-based influence diagrams.

To close, we believe that the MR-POMDP and NSGA2-
LS will be useful in a variety of problems in the medical do-
main (e.g., treatment of ischemic heart disease [8]) to analyse
the various factors that come into play during the decision-
making process. We envision that MR-POMDPs will give
evolutionary algorithmists and medical professionals a com-
mon platform for framing their problem, one simple enough
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to be computationally tractable but complex enough to han-
dle real-world difficulties.
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