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ABSTRACT

In liver transplantation, matching donor and recipient is a
problem that can be solved using machine learning tech-
niques. In this paper we consider a liver transplant dataset
obtained from eleven Spanish hospitals, including the pa-
tient survival or the rejection in liver transplantation one
year after it. To tackle this problem, we use a multi-objective
evolutionary algorithm for training generalized radial basis
functions neural networks. The obtained models provided
medical experts with a mathematical value to predict sur-
vival rates allowing them to come up with a right decision
according to the principles of justice, efficiency and equity.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Medical Information
Systems

General Terms

Experimentation, Performance

∗Corresponding author at: Department of Computer Sci-
ence and Numerical Analysis, University of Córdoba, Ra-
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1. INTRODUCTION
Nowadays, a liver transplantation or hepatic transplanta-

tion is a well accepted treatment for patients with terminal
liver disease. Predicting the first one-year graft survival post
transplantation has the potential to play a critical role in un-
derstanding and improving the matching procedure between
the recipient and donor. Although a high number of data
related to the transplantation procedures has been collected
over the last years, only a small subset of the predictive
factors has been used in modeling liver transplantation out-
comes in order to predict survival rates.

Organ transplantation procedures involve a large number
of variables that may have significant impact on the survival
of the graft and/or the patient. The omission of the vast
majority of the variables may hinder the discovery of under-
lying relationships between survival and the related factors.
In such approaches the complete information underlying the
transplantation datasets cannot be revealed effectively. This
may cause non-optimal policy adoptions. The further steps
(e.g., donor-recipient match) would also be ineffective since
they build on the first step, namely, determination of sig-
nificant variables, which would indicate to which patient an
organ should be allocated based on what criteria.

New trends in biomedicine consider Artificial Neural Net-
works (ANNs) as a classification method, where a decision
is based on the recognition of complex patterns within the
data. ANNs have been studied in a wide variety of med-
ical applications, such as cancer diagnosis [2], myocardial
infarction [20], diagnosis of thyroid function [22] or predic-
tive blood glucose levels [21].

In the field of organ transplantation, ANNs have been
designed, for example, to diagnose cytomegalovirus disease
[23]. In addition, the use of ANNs was investigated in the
prediction of graft failure [18], in the prediction of liver
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transplantation outcome [11], in the selection of patients for
liver transplantation [19] and in the prediction of tacrolimus
blood levels [8]. However, these studies used static models to
predict long-term outcomes based on data collected before
and immediately after transplantation.
In this paper, we study the generalization improvement of

classifiers designed using a Multi-Objective Evolutionary Al-
gorithm (MOEA) [9] for the determination of receiver organ
suitability. These classifiers evaluate the one-year survival
after liver transplantation in eleven hospitals and they are
aimed to achieve a high classification level for each class.
The method is based on two measures: the correct classifi-
cation rate (C) and the minimum sensitivity (MS), as the
minimum of the sensitivities of all classes.
We use a generalized version of the standard Radial Basis

Function Neural Network (RBFNN), based on the proba-
bility density function of the Generalized Gaussian Distri-
bution (GGD). This basis functions are called Generalized
Gaussian Radial Basis Functions (GRBF). The GGD may
represent different forms of distribution function by chang-
ing a real parameter τ , such as the impulsive, Laplacian,
Gaussian and uniform distributions. Based on this prob-
ability distribution, the GRBF is defined by removing the
constraints of a probability function.
The paper is organized as follows: Section 2 shows a de-

scription of the method used; Section 3 describes the GRBF;
Section 4 describes the dataset used and explains the exper-
imental design; Section 5 shows the results obtained, while
conclusions and future research are outlined in Section 6.

2. METHOD
The MOEA used in this paper is called Memetic Pareto

Differential Evolutionary Neural Network (MPDENN). This
section briefly explains the schema of this algorithm. For
more details, see [10].
The MPDENN algorithm was developed by R. Storn and

K. Price in [24], modified by H. Abbass to train ANNs [1]
and adapted by our research group for C and MS measures
[12]. The fundamental bases of this algorithm are Differen-
tial Evolution (DE) and the concept of Pareto dominance.
In this case, the MPDENN algorithm is used for training
ANNs with GRBFs (see Section 3) in order to solve a real-
world complex problem of donor-recipient allocation in liver
transplant.
Figure 1 shows the framework of the MPDENN algorithm.

This algorithm starts generating a random population of size
N . Each individual in the population is a neural network,
represented as a vector, that is, each neural network is a
vector of layers, each layer is a vector of neurons and each
neuron is a vector of links. The population is sorted accord-
ing to the non-domination concept and dominated individ-
uals are removed from the population. Then the population
is adjusted until its size is between 3 and half the maximum
size by adding dominated individuals or deleting individu-
als according to their respective distance from their nearest
neighbor. After that, the population is completed with new
offspring generated from three randomly selected individu-
als in the population. The child is generated applying the
crossover operator to the three parents (α1, α2 and α3). The
resultant child is a perturbation of the main parent (α1).
This perturbation occurs with a probability pc for each neu-
ron. It may be: structural, according to expression (1),
where neurons are removed or added to the hidden layer;

or parametric, according to expression (2) for the hidden
layer, or (3) for the output layer, where the weight of the
main parent (α1) is modified by the difference between the
weights of the secondary parents (α2 and α3) multiplied by
a random variable with normal distribution, N (0, 1).
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Delete all dominated

solutions and adjust

the population

Select three individuals

(main parent and

secundary parents)

Apply a differential mutation

Yes

No

Child

Population

size is N

Initialization

N individuals

Apply a differential crossover

Apply iRprop+ local

search to the population

Add the child to

the population

End

Stop

Condition

Yes

YesYesYes

No No

No

No

Local

Search

No

Yes

There is no

dominance

relation

Child dominates

the main parent

Child number N

has been created.

Choose the best child

Figure 1: Framework for MPDENN.
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where ρ
α1

h , ρα2

h and ρ
α3

h are binary values representing whe-
ther or not the hidden neuron h is in the parents α1, α2, and
α3, respectively; ρ

child
h indicates whether or not the hidden

neuron h is in the child; wα1

ih is the weight between the input
neuron i and hidden neuron h in the parent αp and w

αp

ho is
the weight between the hidden neuron h and output neuron
o in the parent αp; w

child
ih and wchild

ho are the weights in the
child.

Afterwards, the mutation operator is applied to the child.
The mutation operator consists in adding or deleting neu-
rons in the hidden layer depending on a pm probability for
each of them. If the neuron exists, it is deleted, but if it does
not exist, then it is created and the weights are established
randomly, according to expression (4).

ρ
child
h ←

{

1 ifρchildh = 0
0 otherwise

. (4)

Finally, the child is added to the population according to
dominance relationships with the main parent, that is, the
child is added if it dominates the main parent α1, if there
is not dominance relationship with him or if it is the best
child of the N rejected children (where N is the population
size).
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Figure 2: Local search procedure Scheme.

This process of generation of children is repeated until the
population is complete.
In three concrete generations of the evolution (the first

initially, the second in the middle and the third at the end),
a local search algorithm is applied once the population is
completed. This procedure can be seen in Figure 2. Local
search does not apply to all individuals, only to the most
representative. The process for selecting these individuals is
as follows: if the number of individuals in the first Pareto
front is lower than or equal to the desired number of rep-
resentative individuals (num), a local search is carried out
on all individuals in the first front without needing to apply
K-means [17]. But, if the number of individuals in the first
front is greater than num, a K-means is applied to the first
front to get the most representative num individuals, who
will then be the object of a local search.
The algorithm is finished when the maximum number of

generations is reached.

3. GENERALIZED RADIAL BASIS FUNC-

TION
The original GRBFs were proposed by Francois [15]. Re-

cently different approaches have been introduced to estimate
the parameters of this novel model [6, 14]. The GRBF is de-
fined by replacing the square power in the exponent of the
standard Radial Basis Function by the τ parameter:

Bj(x,wj) = exp

(

−

(

‖x− cj‖

rj

)τj
)

,

where wj = (cj , rj , τj), cj = (cj1, cj2, . . . , cjk) is the center
of the cluster represented by j-th GRBF transformation, rj
is the corresponding radii or standard deviation, τj is the
exponent of the basis function, and cji, rj , τj ∈ R. Figure
3 presents the activation for the GRBF with different val-
ues of τ . The incorporation of the τ parameter causes the
contraction-relaxation of the GRBF curvature. Thanks to
the additional τ parameter, the GRBF can define more ac-
curately the membership of the patterns that are located
near the decision boundary between clusters.
One problem in high dimensional spaces is that of dis-

tances concentrate: the range of possible distances is not
fully spanned anymore, and most of the patterns are very
far from one another [4]. Therefore, the probability of find-
ing patterns near the center, when the dimension is high,
is almost zero. In particular GRBFs have been analyzed in
high-dimensional problems in [6, 14, 15]. The problem we
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Figure 3: GRBF activation in one-dimensional space

with c = 0 and r = 1 for different τ values.

address in this paper presents sixty-six input variables (cat-
egorical variables have been transformed into binary vari-
ables, one for each possible category). This problem could
be regarded as a high dimensionality classification problem.
Therefore, the use of GRBF is totally justified in this prob-
lem.

However, the original formulation of the GRBF based on
the τ parameter has some drawbacks in that the same vari-
ation in the τ value produces different effects on the GRBF
curvature. Figure 3 shows that an increase of 0.5 in the
τ value (∆τ = +0.5) when τ = 1 produces a significant
variation in the GRBF curvature, although when τ = 3,
an increase of 0.5 barely modifies GRBF curvature. Fur-
thermore, the τ parameter causes different curvatures for
different GRBF radii values.

Because of the drawbacks of the original formulation of the
GRBF, we reformulate the GRBF τ parameter as a function
compounded by the radii and the α angle formed by the x-
axis with the tangent to the GRBF at the point where x = r

(Figure 4).
The reformulation of the GRBF, from the α angle (Figure

4), is obtained as follows: firstly, we derive the GRBF with
respect to the input variable (c = 0):

∂Bj(x,wj)

∂x
= −e−( x

r
)τ · τ · xτ−1 · r−τ

.
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for a one dimensional input space.

Secondly, the derivative at the point x = r is calculated:

tan(β) =
∂Bj(x,wj)

∂x

⌋

(x=r)

= −
τ

e · r
.

Finally, taking into account that tan(α) = − tan(β) (Fig-
ure 4) and that the derivative of the GRBF with respect to
the input variable in the point x = r is equal to tan(β), the
α angle is determined as:

α = arctan
( τ

e · r

)

.

Therefore, the reformulated GRBF is expressed as:

Bj(x,wj) = exp

(

−
‖x− cj‖

rj

)e·rj ·tanαj

.

4. EXPERIMENTAL STUDY

4.1 Dataset description
In order to solve the matching problem between the liver

of the donor and the recipient of the waiting list, the depen-
dent variable chosen is the graft survival at 12 months. This
is a binary variable equal to 0 when representing graft sur-
vival (GS) class and 1 when representing graft non-survival
(GNS) class. Thus, the problem refers to a classification
problem. However, the relationship between the depen-
dent variable and the independent/predictor variables is not
known in advance. Therefore, as a first step of the method,
various machine learning techniques (specifically binary clas-
sifiers here) which can conduct classification are implemented
to predict the graft survival.
To perform this binary classification problem we have been

provided with 1001 patterns (Donor-Recipient (D-R) pairs)
obtained along the years 2007 and 2008 in eleven hospi-
tals located throughout the Spanish geography. 19 recipient
characteristics, 20 donor characteristics and 3 operative fac-
tors were reported for each D-R pair. In this case, we have
an unbalanced structure of the dataset since 840 pairs out
of the 1001 patterns belong to the GS class and the rest to
the GNS class.
To check the accuracy of the models obtained by the evo-

lutionary algorithm, the neural network models are trained

using a subset of the dataset (training set) and tested with
the rest of it (generalization set). For this purpose, we built
a training group of 75% randomly chosen D-R pairs and
tested on the remaining group of 25%. During the creation
of these two sets, this 75-25% proportion was kept for each
of the participating liver transplantation units. That is, 75%
of the patterns of each center is used for training and the re-
maining 25% for generalization. In addition, the proportion
of 75-25% is maintained between the patterns of GS class
and GNS class.

There is an additional difficulty in this dataset, a high
number of patients lose the graft within the first two weeks,
indicating that the D-R pairs are not very homogeneous in
this class. So the standard classifiers, as discussed in the
experimental section, generally classify all or almost all pat-
terns as belonging to the GS class and none to the GNS

class. These classifiers are called trivial classifiers. For a
given (binary, ordinal, or other) classification problem, a
trivial classifier Θk may be defined as a classifier that as-
signs all the pairs to the same class yk. Accordingly, the
trivial class, for a error measure E, (denoted ỹ) may be de-
fined as the class that minimizes the chosen error measure
E on the training set D across all trivial classifiers, i.e., like-
wise, the Θk trivial-class classifier for E may be defined as
that which assigns all D-R pairs to the trivial class for E. A
measure such as standard error rate (namely, the fraction of
D-R pairs that are incorrectly classified) is not robust to this
imbalance, since the majority-class classifier (i.e., the triv-
ial classifier that assigns all D-R pairs to the majority class,
GS class, which is the trivial class for error rate) would
be deemed extremely “error-free”, probably more error-free
than any genuinely designed classifier.

Assuming that all misclassifications are equally costly and
there is no profit for a correct classification, we assume that a
good classifier should obtain a high accuracy level as well as
an acceptable level for each class (GS orGNS). In real prob-
lems these objectives are usually in competition. Achieving
a high accuracy classification level usually means sacrificing
the classification in some class.

To solve this difficulty, we consider in this paper a MOEA
for neural networks. The MOEA used is the MPDENN de-
fined in Section 2 and is guided by two performance mea-
sures of a binary classifier (these measures are described in
the following Section).

4.2 Accuracy and Minimum Sensitivity
Considering D = {(xn, yn);n = 1, 2, . . . , N} as a training

dataset, where xn = (x1n, . . . , xKn) is the random vector of
measurements taking values in Ω ⊂ RK , and yn is the class
level of the n-th individual, we define C by:

C =

(

1

N

) N
∑

n=1

(I(C(xn = yn))),

where I(·) is the zero-one loss function, yn is the desired
output for pattern n and N is the total number of patterns
in the dataset. A good classifier tries to achieve the highest
possible C in a given problem. However, the C measure
is a discontinuous function, which makes convergence very
difficult in neural network optimization.

Thus, instead of accuracy, we consider the cross-entropy
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continuous function, E:

E(g,Θ) =

= −
1

N

N
∑

n=1

[ynlog(g(xn,Θ)) + (1− yn)log(1− g(xn,Θ))],

where g is neural network model and g(xn,Θ) is the proba-
bility that the xn pattern belongs to the GS class, calculated
using the next softmax activation function:

g(xn,Θ) =
exp fl(xn,Θ)

∑J

j=1 exp fj(xn,Θ)
, for l = 1, ..., J ,

where J is the number of classes in the problem and fl(xn,Θ)
is the output of the l-th output neuron for pattern xn, de-
fined by:

fl(xn,Θ) = β
l
0 +

M
∑

j=1

β
l
jBj(xn,wj), for l = 1, ..., J ,

where Θ = (βl
0, ..., β

l
M ,w1, ...,wM ) is the vector of weights

of the output node, M is the number of hidden nodes, wj =
{wj

0, ..., w
j
K}, for j = 1, ...,M , is the vector of input weights

of the hidden node j and Bj(·) is the GRBF activation func-
tion.
Then, we propose a strictly decreasing transformation of

the entropy error E(g,Θ) as the first fitness measure to max-
imize:

A(g) =
1

1 + E(g,Θ)
.

The second objective to maximize is the minimum sensi-
tivity of the classifier, MS, defined as the minimum value
of the sensitivities for each class, MS = min{Si; i = 0, 1}.
That is, maximizing the lowest percentage of examples cor-
rectly predicted as belonging to each class with respect to
the total number of examples in the corresponding class.
The minimum sensitivity versus accuracy pair (MS,C)

expresses two features associated with a classifier: global
performance, C, and the rate of the worst classified class,
MS. The selection of MS as a complementary measure of
C can be justified upon considering that:

C =
f0

N
S0 +

f1

N
S1,

is the weighted average of the sensitivities of each of the two
classes, and fi is the size of the Ci class. From a statistical
point of view, since C is a weighted average, it will be a good
and representative measurement of the set of sensitivities if
they are homogeneous enough.
The following inequality is always fulfilled for a classifier

g, MS ≤ C ≤ 1− (1−MS)p∗, where p∗ is the minimum of
the estimated prior probabilities. Therefore, each classifier
will be represented as a point in the (MS,E) training plane
(see Figure 5). The area outside the triangle is an unfeasible
region because of the inequality. Note that it is possible to
find among them classifiers with a high level of accuracy,
particularly in problems with low p∗ (unbalanced problems).
A priori, we can think that MS and C objectives can be

positively correlated, but while this may be true for small
values of MS and C, it is not for values close to 1 on both
MS and C. In this way, the objectives are competitive at
the top right corner of the triangle. For a more detailed
information, see [13].

4.3 Experimental Design
Once the Pareto front is built, two automatic methods are

considered in order to construct a neural network model with
the information of the models on it. These methods provide
us with single models that can be compared with other clas-
sification methods existing in the literature. The process
followed in these methods is the next one: once the first
Pareto front is calculated using the patterns of the train-
ing set, the best individual belonging to the Pareto front
on Entropy (Ei) and the best individual in terms of Min-
imum Sensitivity (MSi) are selected. Then the values of
C and MS are calculated on the generalization set for the
Ei and MSi individuals. Therefore we will have an indi-
vidual EiG = (CEiG,MSEiG) and an individual MSiG =
(CMSiG,MSMSiG). This is repeated 30 times and then
the average and standard deviation obtained from the in-
dividuals is estimated, EiG = (CEiG,MSEiG), MSiG =
(CMSiG,MSMSiG). The first expression is the average ob-
tained taking E into account as the primary objective, and
the second taking MS into account as the primary objec-
tive. So, the opposite extremes of the Pareto front are taken
in each of the executions, and the first automatic procedure
is called MPDENN-C (training with E and generalization
with C) and the second MPDENN-MS (Minimum Sensitiv-
ity). In Figure 5, the process is shown graphically.

Figure 5: Scheme to obtain statistical results.

4.4 Statistical Analysis
We have compared the MPDENN algorithm with 7 state-

of-the-art methods well known in the literature. 6 of this al-
gorithms have been configured and runned in WEKA1 [25],
and the LibSVM 2 method is available in a website as a con-
tinuously updated software library for Support Vector Ma-
chines [7]. The methods used for comparison are:

MLP: A neural network classifier that uses backpropaga-
tion to adjust the weights. The nodes in this network
are all sigmoid. This method is stochastic, so that
its execution has been repeated 30 times with differ-
ent seeds. Weights are updated in 0.3 and momentum
applied to the weights is 0.2.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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C4.5: Classifier for generating a pruned or unpruned C4.5
decision tree. The confidence factor used for pruning
is 0.25 and the minimum number of instances per leaf
is 2.

LMT: Classifier for building logistic model trees, which are
classification trees with logistic regression functions at
the leaves. The algorithm can deal with binary and
multi-class target variables, numeric and nominal at-
tributes and missing values. The minimum number of
instances for a node to be considered for splitting is
set to 15 and the beta value used for weight trimming
is 0.

NaivesBayes: It is a classifier whose numeric estimator
precision values are chosen based on analysis of the
training data.

SLogistic: Classifier for building linear logistic regression
models. LogitBoost with simple regression functions
as base learners is used for fitting the logistic models.
The optimal number of LogitBoost iterations is cross-
validated, which leads to automatic attribute selection.
The maximum of iterations is set to 500.

MLogistic: Classifier for building a multinomial logistic re-
gression model with a ridge estimator. The ridge value
used in the log-likelihood is 1.0 ∗ 10−8.

LibSVM: This is a software package for the optimization
of Support Vector Machines (SVM). This library con-
tains a script for automatically adjusting the hyper-
parameters associated to this kind of models, including
the cost parameter and the width of the Gaussian ker-
nels. The library searches the best hyper-parameter
values using a grid search and choosing the best con-
figuration by a 10-fold cross-validation process (this
cross-validation process is guided by the AUC mea-
sure).

For MPDENN, the population size is established at M =
25. The crossover probability is 0.8 and the mutation prob-
ability is 0.1. For iRprop+, the parameters adopted are
η+ = 1.2, η− = 0.5, ∆0 = 0.0125 (the initial value of the
∆ij), ∆min = 0, ∆max = 50 and Epochs = 5, see [16] for
iRprop+ parameter description. The optimization process is
applied 3 times during execution (every 33.33% generations)
and uses num = 5 cluster in the clustering algorithm. To
start processing data, each one of the input variables was
scaled in the ranks [−1.0, 1.0] to avoid the saturation of the
signal. In addition, categorical variables have been trans-
formed into so many binary variables as possible categories.
To analyze the robustness of the proposed method, we

used C, MS and others 3 metrics of comparison [3, 5]:

AUC or Area Under Curve: The AUC of a binary clas-
sifier is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher
than a randomly chosen negative instance

AUC =
1

N0N1

N0
∑

n=1

N1
∑

m=1

c(pn,pm),

where N0 is the number of examples for GS class and
N1 for GNS class, pn = [p0n, p1n] the estimated prob-
ability vector for members of GS class and pm =

[p0m, p1m] the estimated probability vector for mem-
bers of GNS class, being c(pn,pm) = 1 if p0n > p0m
and 0 in otherwise.

KAPPA: This is originally a measure of agreement between
two classifiers, although it can also be employed as a
classifier performance measure.

KAPPA =
p(A)− p(E)

1− p(E)
,

where p(A) is the relative observed agreement among
classifiers, and p(E) is the probability that agreement
is due to chance. In this case, p(A) is just the accuracy
of the classifier.

RMSE or Root Mean Square Error: It measures how
much predictions deviate from the true targets.

RMSE =

√

√

√

√

1

N

N
∑

n=1

(yn − ŷn)2,

where yn is the real value and ŷn is the estimated value.

5. RESULTS
Table 1 show the results obtained with each method. From

a descriptive point of view, MPDENN-C, LMT, LibSVM
and SLogistic methods obtain similar results in C measure,
MPDENN-C being the best model (with a value of 84.46%).
For theMS metric, the best result is obtained by MPDENN-
MS method (45.55%) followed by MLP (14.63%). The result
obtained by the best MPDENN-MS model is very interest-
ing because it has a minimum sensitivity of 56.10% (much
higher than that obtained by the other methods). The best
AUC value is obtained by NaiveBayes (0.6430) and the sec-
ond by the best MPDENN-C model (0.6134); other meth-
ods give similar results (except C.45). The results obtained
in KAPPA metric are very similar, emphasizing that ob-
tained by the best MPDENN-MS model (0.1119) and by the
best MLP model (0.1004). For the RMSE metric, the best
MPDENN-C model obtains the best result (0.3607) followed
by LibSVM (0.3698).

Several methods used achieve the same value of C (83.66%),
MS (0.00%) and KAPPA (0.0000). This is because all of
these methods results in trivial classifiers.

6. CONCLUSIONS
In this paper, we present generalized radial basis functions

neural networks models that can help medical experts in the
donor-recipient allocation. These models are obtained by a
multi-objective evolutionary algorithm guided by the Accu-
racy and the Minimum Sensitivity measures. Minimum Sen-
sitivity is used to avoid the design of models with high global
performance but bad performance when considering the clas-
sification rate for each class (survival or non-survival). Sev-
eral methods, which do not take into account the minimum
sensitivity while training, obtained trivial classifiers. These
trivial classifiers are useless to solve any problem and, espe-
cially, one of biomedicine.

The results obtained with the best models of MPDENN-E
and MPDENN-MS methods suggest that a combination of
both would provide a useful tool for the problem of donor-
recipient assignment. This combination could be a rule-
based system, which would provide an understandable and

484



Table 1: Results obtained in mean and standard deviation for different methods using the metrics C, MS,

AUC, KAPPA and RMSE.

Generalization results

Method CG(%) MSG(%) AUCG KAPPAG RMSEG

Best MPDENN-C model 84.46 4.88 0.6134 0.0790 0.3607

Best MPDENN-MS model 60.96 56.10 0.5743 0.1119 0.4663
Best MLP model 80.47 14.63 0.5530 0.1004 0.4164

C4.5 82.07 0.00 0.4720 -0.0299 0.3940
LMT 83.66 0.00 0.5840 0.0000 0.3703

NaiveBayes 79.68 7.32 0.6430 0.0149 0.4055
SLogistic 83.66 0.00 0.5840 0.0000 0.3703
MLogistic 82.86 0.00 0.5650 -0.0154 0.3764
LibSVM 83.66 0.00 0.5957 0.0000 0.3698

Method
CG(%) MSG(%) AUCG KAPPAG RMSEG

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD
MPDENN-C 83.66± 0.23 0.81± 1.48 0.5818± 0.0411 0.0106± 0.0222 0.3690± 0.0035
MPDENN-MS 59.61± 5.44 45.55± 9.26 0.5627± 0.0426 0.0563± 0.0486 0.4898± 0.0286

MLP 76.52± 1.97 11.45± 4.30 0.5120± 0.0310 0.0087± 0.0609 0.4510± 0.0141
The best result is in bold face and the second best result in italics.

comprehensible tool for medical experts. The system would
receive as input a set of potential recipients and form a
donor-recipient pair between each of them and donor/organ
data. These pairs would be the input for these neural net-
work models. With the results provided by these models
and using a simple set of rules, the system would determine
which of the recipients should receive the organ.
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[16] C. Igel and M. HÃijsken. Empirical evaluation of the
improved rprop learning algorithms. Neurocomputing,
50(6):105–123, 2003.

[17] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, pages 281–297. U. C.
Berkeley Press, 1967.

[18] S. Matis, H. Doyle, I. Marino, R. Mural, and
E. Uberbacher. Use of neural networks for prediction
of graft failure following liver transplantation. IEEE
Symposium on Computer-Based Medical Systems,
0:133–140, 1995.

[19] G. Molino and A. Arrigoni. Design of a
computer-assisted programme supporting the selection
and clinical management of patients referred for liver
transplantation. Ital J Gastroenterol, 26:31–43, 1994.

[20] S. Pedersen, J. Jorgensen, and J. Pedersen. Use of
neural networks to diagnose acute myocardial
infarction. II. A clinical application. Clin Chem,
42:613–617, 1996.

[21] K. Prank, C. Jurgens, A. von zur Muhlen, and
G. Brabant. Predictive neural networks for learning
the time course of blood glucose levels from the
complex interaction of counterregulatory hormones.
Neural Comput, 10:941–953, 1998.

[22] P. Sharpe, H. Solberg, K. Rootwet, and M. Yearworth.
Artificial neural networks in diagnosis of thyroid
function from in vitro laboratory tests. Clin Chem,
39:2248–2253, 1993.

[23] D. Sheppard, D. McPhee, C. Darke, B. Shrethra,
R. Moore, A. Jurewitz, and A. Gray. Predicting
cytomegalovirus disease after renal transplantation:
an artificial neural network approach. Int J Med Inf,
54(1):55–76, 1999.

[24] R. Storn and K. Price. Differential evolution. A fast
and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization,
11:341–359, 1997.

[25] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Data
Management Systems. Morgan Kaufmann (Elsevier),
2nd edition, 2005.

486




