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ABSTRACT

This paper considers the optimal communication spanning
tree (OCST) problem. Previous work analyzed features of
high-quality solutions. Consequently, integrating this knowl-
edge into a metaheuristic increases its performance for the
OCST problem. In this paper, we present a guided local
search (GLS) approach which dynamically changes the ob-
jective function to guide the search process into promis-
ing areas. In contrast to traditional approaches which re-
ward promising solution features by favoring edges with low
weights pointing towards the tree’s center, GLS penalizes
low-quality edges with large weights that do not point to-
wards the tree’s center.

Categories and Subject Descriptors: I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search

General Terms: Algorithms, Design

Keywords: optimal communications spanning tree, guided
local search, problem-specific adaptation

1. INTRODUCTION

The optimal communication spanning tree (OCST) prob-
lem is a common combinatorial tree optimization problem
[3]. Given a collection of nodes and the distances and com-
munications demands between them, we seek a tree that
connects all nodes at minimum total communications cost,
defined to be the sum over all pairs of nodes of the prod-
ucts of the distances and communications demands between
them.

The OCST problem is NP-hard [2] and MAX SNP-
hard. Researchers studied various exact, approximate and
heuristic solution approaches for the problem. The current
state-of-the-art approaches [4, 1, 5, 6] are based on heuristics
and metaheuristics, in particular evolutionary algorithms.

Previous work [6, 5] studied properties of OCST problems.
They found that edges with low distance weights pointing
towards the center of a graph occur in high-quality solu-
tions with higher probability. There are several possibili-
ties of how such a-priori knowledge can be exploited in the
design of efficient metaheuristics for OCST problems. In
this paper, we apply GLS to the OCST problem and show
how problem-specific knowledge can be used to improve the
search performance by changing the evaluation function.
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2. GUIDED LOCAL SEARCH

Guided local search (GLS) [8], ensures diversification by
dynamically changing the objective function by adding penal-
ties. This allows search to escape local optima. GLS’s mech-
anism to change the objective function is based on solution

features. Since edges are proper solution features for graph
based problems [8], we define the set of solution features for
the OCST problem as all edges in a fully connected graph.

At the beginning of a GLS run, a starting solution T0 is
created and all penalties are set to zero. Then, a local search
method using the original evaluation function f is started
from solution T0 and a local optimum T1 is found. Now the
penalties for solution features which cause the highest costs
are incremented by 1. The higher the cost of a solution fea-
ture, the higher the utility of penalizing this feature. For
the OCST problem, the cost of a solution feature is simply
the weight of an edge or the orientation of an edge or calcu-
lated using weight and orientation. To ensure diversification
and to avoid always the same features being penalized, the
current penalties are part of the utility function, which cal-
culates the utility of penalization.

After the initialization phase, the optimization phase is it-
erated until a previously defined stopping criterion is reached.
First, a local search method is started from solution Tk and
a new local optimum Tk+1 is found. Then, some solution
features of the current local optima are penalized. The local
search in the optimization phase uses the altered objective
function h(T ) = f(T )+λ ·

∑M

i=1
pi · Ii(T ), where f(T ) is the

original evaluation function with no modifications, M is the
number of solution features, λ is a parameter that controls
the importance of the penalties. Since we use the edges as
solution features, M = n− 1 for the OCST problem. Using
h, the current solution is not attractive anymore, the local
search method is able to escape from the local optimum.

Search performance strongly depends on the setting of λ.
Tsang et. al. [7] suggested to calculate the parameter accord-
ing to the first found local optima T1 as λ = α · f(T1)/M .
The only parameter required tuning is α ∈]0, 1]. In our ex-
periments best results are achieved with a setting of α = 0.3.

3. EXPERIMENTAL RESULTS

Following previous work [4, 5] we use randomly created
OCST test instances. The real-valued demands rij are ran-
domly created and uniformly distributed in ]0, 10]. The dis-
tance weights wij are calculated as the Euclidean distances
between the nodes i and j which are randomly placed on a
10× 10 2-dimensional grid.

We compare the GLS approach to an EA using edge-sets
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Table 1: Performance comparison
n eval ES-w ES-o ES-ow GLS-w GLS-o GLS-ow

10 2k Psuc 0.43 0.14 0.67 0.74 0.7 0.71

µ 1498.55 1535.0 1492.37 1494.96 1496.2 1495.49

σ 7.2 20.28 3.42 11.34 12.9 11.81

15 3k µ 3675.87 3881.14 3617.82 3622.12 3622.94 3624.59

σ 32.06 77.71 15.77 45.04 45.25 46.9

25 5k µ 10994 12336 10616 10599 10599 10599

σ 149.33 439.71 76.89 198.46 188.21 188.34

50 10k µ 48694 60946 45900 45578 45581 45539

σ 996.33 3273.73 647.76 1244.97 1226.11 1210.7

75 20k µ 112189 136220 105026 103598 103432 103485

σ 2298.56 7053.38 1598.57 2657.63 2600.17 2514.29

100 40k µ 199753 227468 187148 185208 185903 185479

σ 3914.58 8416.62 2404.58 4311.28 4886.46 4654.08

[4] (ES). The population size N = 200. We extend the orig-
inal crossover operator, which only considers edge weights,
and consider edge weights and edge orientations as proposed
in [6]. Mutation is applied after crossover with probability
pm = 1/n. The initial population consists of random span-
ning trees.

For both GLS and ES we study three different variants of
GLS using different costs of the solutions features: 1) only
edge weights (-w), 2) only edge orientation (-o) , and 3) edge
weight and edge orientation (-ow). Each optimization run
is terminated after eval fitness evaluations. Since a larger
number of evaluations increases search performance, we also
increase eval with larger n (see Table 1). For each OCST
problem instance, ten optimization runs are performed.

Table 1 shows Psuc (only for n = 10), the mean cost µ of
the best solution at the end of a run and the correspond-
ing standard deviation σ. We observe that all GLS vari-
ants outperform ES for larger problem instances (n ≥ 25).
For smaller instances, ES is slightly better. Comparing
the different ES configurations, we find that considering
problem-specific knowledge for the crossover operator im-
proves search performance. The more knowledge is inte-
grated, the better are the results. ES-ow is significantly
better than ES-o or ES-w. The situation is different for
GLS. The average fitness µ at the end of a run shows no
significant difference whether we use edge weights, edge ori-
entation or both as costs of solution features.

The main difference between ES and GLS is the type
of additional selection pressure that is introduced by con-
sidering problem-specific knowledge. ES favors edges with
low weight and proper orientation by giving them a higher
chance to be selected in recombination. In contrast, GLS
penalizes low-quality solution features and does not reward
“good” solution features. Since all three types of feature
costs (weight, orientation, and both combined) are able to
identify low-quality solutions features, we observe no per-
formance difference. We study this conjecture in the further
paragraphs.

Figure 1 plots the average weight wij (left) and the aver-
age edge orientation γij (right) of the edges in the current
best found solution over the number of search steps.

For ES, the choice of problem-specific knowledge has a
strong influence on the properties of the found solution.
When considering only orientation (ES-o), an ES run finds
good solutions with many edges that point towards the graph
center (low γ). Edge weights are also reduced, but less in
comparison to other variants or in comparison to the change
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Figure 1: Average edge weight (left) and orientation
(right) over the number of search steps for n = 50.

of γ. When considering only edge weights (ES-w), we ob-
serve the opposite behavior: ES finds solutions with low-
weight edges , which do not necessarily point towards the
center of the graph. If we consider both weights and orien-
tation (ES-ow), we are able to find solutions with low-weight
edges that point towards the graph center, however less than
when considering only edge weights (ES-w) or orientation
(ES-o), respectively. In contrast, for GLS the choice of the
cost of solution feature has no significant influence. All three
variants show similar behavior.

4. OBSERVATIONS

Problem-specific GLS outperforms state-of-the-art EAs
using edge-sets although EAs also consider weights and ori-
entation of edges. The performance of GLS is about inde-
pendent of how much problem-specific knowledge is consid-
ered. Thus, GLS shows similar behavior if either edges with
high weight, wrong orientation, or both are penalized. This
is in contrast to results for EAs with edge-sets where the
choice of problem-specific knowledge has a strong influence
on search performance.
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