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ABSTRACT
In the field of life sciences it often turns out to be a chal-
lenge to quickly find the desired information due to the huge
amount of available data. The research area of information
retrieval (IR) addresses this problem and tries to provide
suitable solutions. One of the approaches used in IR is query
extension based on keyword or document clusters.

In this paper we present a deep analysis of a keyword
clustering approach using four different kinds of evolution-
ary algorithms, namely evolution strategy (ES), genetic al-
gorithm (GA), genetic algorithm with strict offspring selec-
tion (OSGA), and the multi-objective elitist non-dominated
sorting genetic algorithm (NSGA-II).

We have identified features that characterize solution can-
didates for the keyword clustering problem, e.g., the number
of documents covered and how well the identified clusters
of keywords match with the occurrence of keywords in the
given set of documents. The use of these features and how
evolutionary algorithms can be used to solve the optimiza-
tion of keyword clusters is shown in this paper.

To test the here presented approach we used a real world
data set provided within the TREC-9 conference; this data
collection includes information about approximately 36,000
documents collected from the PubMed database.

In the results section we compare the performance of the
here tested evolutionary algorithms and see that especially
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ES and NSGA-II produce meaningful results for this docu-
ments collection. This approach based on evolutionary algo-
rithms shall be used further on in automated query extension
for biomedical information retrieval in PubMed.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Heuristic methods; I.7.5
[Document and Text Processing]: Document Capture;
J.3 [Life and Medical Sciences]: Medical Information
Systems

General Terms
Algorithms, Experimentation, Theory

Keywords
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1. INTRODUCTION AND MOTIVATION
Information retrieval in the field of life sciences gains more

and more importance due to the nearly exponentially grow-
ing amount of available data. To obtain the information
searched for in a reasonable amount of time good search al-
gorithms are needed. Query extension is one of these meth-
ods and is well-known in biomedical information retrieval [5]:
Queries of users are extended by suitable words to find more
significant results. To be able to extend these search strings
by first identifying matching keywords, good keyword clus-
ters or document clusters are required. In [3] we have already
proposed a new keyword clustering method with evolution-
ary algorithms. In this paper we provide a deeper analysis
of the use of various methods with our keyword clustering
approach.
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Figure 1: Example of a keyword clustering solution
candidate taken from [3].

1.1 Solution Candidate Structure
A keyword clustering solution candidate c consists of |c|

clusters; each cluster ci contains ni keywords. Each docu-
ment d comprises |KW (d)| keywords. Documents are as-
signed to clusters through their keywords, i.e., if a cluster ci
contains a keyword kj and a document dl contains the same
keyword, then dl is assigned to ci. In Figure 1 we provide
a schematic view of a solution candidate. We have imple-
mented various genetic operators for mutating and crossing
the described solution candidates that can be used in evolu-
tionary algorithms for keyword cluster optimization. Details
on these operators can be found in [3].

1.2 Fitness Function
To be able to evaluate a generated solution candidate an

appropriate fitness function is needed. The function pro-
posed here does not rely on the often used distances of words
in the cluster [4], but takes into account some properties we
consider essential for a keyword cluster. The combination of
these properties and respective weighting factors conclude
the fitness function.

1.2.1 Parameters
The following features, also previously described in [3],

have been identified to be important in keyword cluster op-
timization:

A = 1−
(
At

Ad
− 1

)
(1)

B =
Ad

N
(2)
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|KW (d)|

|dCi |
(3)
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dConf(dj ,Ci)
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|

)

CK
(6)
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√√√√ 1

CK − 1

CK∑
i=1

(NCi −NC)2 (7)

G = 1−
( |CK − ϕ ∗ logN |

ϕ ∗ logN
)2

(8)

where Ad is the number of distinct documents assigned
to a cluster, At is the total number of assigned documents
including multiple assignments, N is the total number of
documents, and CK the number of keyword clusters. Pa-
rameter A is relevant as we are interested in assigning docu-
ments to as few clusters as possible. Parameter B quantifies
the number of documents included in the clustering. In pa-
rameter C the cluster confidence of all clusters is measured;
a cluster is regarded as confident if its assigned documents
contain only keywords also present in the cluster. In con-
trast, parameter D deals with the document confidence of
the documents assigned to a cluster; a document is consid-
ered as confident if the cluster it is assigned to comprises
only keywords also present in the document. Parameter E
provides a measurement of the standard deviation of the
number of documents assigned to the clusters and parame-
ter G deals with the number of generated clusters. Using the
variable ϕ in Equation 8 we define the approximate number
of desired clusters.

The combination of these parameters leads to the follow-
ing fitness function:

F = α ∗A+ β ∗ B + γ ∗ C + δ ∗D + ε ∗E + ζ ∗G (9)

where A, B, C, D, E and G are the parameters described in
Equations 1 - 8 and α, β, γ, δ, ε and ζ are their corresponding
weighting factors. Additional details on this fitness function
and the contributors are given in [3].

1.2.2 Example
For a better understanding we here provide an example of

fitness calculation. Let us assume we have three documents
d1, d2, and d3 containing various keywords (see Table 1).

Document d1 Document d2 Document d3
lung cancer heart
cancer smoke attack
alveolus cigarette myocardial

Table 1: Example: Documents

Cluster C1 Cluster C2 Cluster C3

cancer heart lung
smoke myocardial heart

Table 2: Example: Keyword clustering solution can-
didate

C1 C2 C3

d1 d3 d1
d2 d3

Table 3: Example: Documents assigned to the solu-
tion candidate in Table 2

Further, we assume our algorithm has created the keyword
clustering candidate depicted in Table 2. In Table 3 we
provide the assignments of the documents to the clusters.
Calculating the values for the Equations 1 - 8, assuming
ϕ = 4, we get:
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With equal weighting, i.e., setting α, β, γ, δ, ε and ζ to 1,
we obtain the following fitness value for our example:

F = α ∗A+ β ∗B + γ ∗ C + δ ∗D + ε ∗ E + ζ ∗G ≈
≈ 1

3
+ 1 +

1

2
+

3

4
+ 0.42 + 0.67 ≈ 3.67

An example for an optimal solution could in this case con-
sist of 2 clusters, cluster 1 holding document d1 and d2 and
keywords “cancer”, “smoke”, and “lung”, and cluster 2 con-
taining d3 with all its three keywords. The fitness value of
this solution would then be 4.66.

Figure 2: Example of a Pareto front

2. METHODS
We have tested our clustering approach with several evolu-

tionary algorithms (EAs). In first tests [3] we realized that
including a lot of documents in the clustering (parameter
B in Equation 2) and having a high cluster and document
confidence (parameter C in Equation 4 and D in Equation
6) can be contrary objectives. Therefore, we have decided
not only to perform analyses with single-objective EAs but
to try also a multi-objective approach. We used the open
source framework HeuristicLab [10] as base for our work
(http://dev.heuristiclab.com).

As single-objective representatives of evolutionary algo-
rithms we use Evolution Strategy (ES) [9], Genetic Algo-
rithms (GA) [6] and Genetic Algorithms with strict Off-
spring Selection (OSGA) [1]. While ES is mainly driven
by mutation and selection, the evolutionary process in ge-
netic algorithms is directed by the interplay of mutation,
crossover and selection. The OSGA is an extension of the
standard GA and additionally includes an offspring selection
step.

Since we have in this context also contrary objectives we
use also a representative of multi-objective EAs: the eli-
tist non-dominated sorting genetic algorithm (NSGA-II) [2].
The NSGA-II generates a so-called Pareto front of solutions;
these solutions are Pareto optimal, i.e., they are not domi-
nated by any other solution as illustrated in Figure 21.

3. EMPIRICAL TESTS

3.1 Clustering Data
The data used for testing our approach was taken from the

9th Text Retrieval Conference (TREC-9) in the year 2000
[11] containing 36,890 entries. Each item is a PubMed [7]
entry, containing title, abstract, authors, source, publication
type, and its medical subject headings (MeSH) [8]. MeSH
terms are a controlled vocabulary used to categorize med-
ical issues. We chose this data set because we consider it
important to evaluate new methods on real world problems.

We have preprocessed those entries by removing the so-
called stop words (e.g., “a”, “and”, “or”) and by using the
tf − idf weighting. This weighting is often applied in IR
(as for example described in [4] and [5]) to extract the most

1In the context of muli-criterial optimization a solution dom-
inates another solution if it is better or equal with respect
to all defined qualities. For details please see [2].
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configuration α β γ δ ε ζ φ

I 0.1 2 3 0.3 0.001 2 100

II 1 3 7 0.5 0.001 2 100

III 2 5 4 0.5 0.001 2 100

Table 4: Weighting factor settings for single-
objective tests

configuration population WF mutation
size config rate

OSGA.1 10 I 5%

OSGA.2 10 I 10%

OSGA.3 10 I 20%

OSGA.4 10 I 50%

OSGA.5 10 II 5%

OSGA.6 10 II 10%

OSGA.7 10 II 20%

OSGA.8 10 II 50%

OSGA.9 10 III 5%

OSGA.10 10 III 10%

OSGA.11 10 III 20%

OSGA.12 10 III 50%

OSGA.13 50 I 5%

OSGA.14 50 I 10%

OSGA.15 50 I 20%

OSGA.16 50 I 50%

OSGA.17 50 II 5%

OSGA.18 50 II 10%

OSGA.19 50 II 20%

OSGA.20 50 II 50%

OSGA.21 50 III 5%

OSGA.22 50 III 10%

OSGA.23 50 III 20%

OSGA.24 50 III 50%

Table 5: Algorithm parameters for OSGA

significant words. The formula is given by

dij = tfij ∗ idfj (10)

where tfij is the term frequency of term j in document i and
idfj is the inverse document frequency of term j. If a specific
word occurs very frequently in a specific document but not
in all other documents, then it is considered as significant
for the mentioned document and has a high dij value. The
threshold used here was the average frequency. Using this
weighting we have eliminated a lot of non-significant words
such as for example “human”, which occurred in 78% of the
data. All in all only 29% of the available keywords remained.

3.2 Test Setup
We used different population sizes (namely 10 and 50 for

OSGA and NSGA-II; 50 and 200 for GA) and mutation rates
(5%, 10%, 20%, and 50% for GA and OSGA; 10%, 20%,
50%, and 100% for the NSGA-II). For ES three different
settings for μ+λ were used (namely 1+1, 1+10, 10+100).
Three different weighting factor settings have been tested for
the single-objective methods (see Table 4), for the NSGA-
II we optimized parameters B, C, and D. The number of
evaluated solutions was set to 10,000 for all algorithms and
all parameter settings and for each setup 5 independent runs
have been executed. See Tables 5 - 8 for more details.

3.3 Results
In Tables 9 - 13 the results of our empirical tests are pre-

sented. In addition to the original OSGA tests in which the
maximum selection pressure was set to 100, we here also
show results for the same runs for which the maximum se-
lection pressure was set to 1,000. The average and standard
deviation numbers presented here describe the quality and
parameter values of the best solutions of five independent

configuration μ λ WF
config

ES.1 1 1 I

ES.2 1 1 II

ES.3 1 1 III

ES.4 1 10 I

ES.5 1 10 II

ES.6 1 10 III

ES.7 10 100 I

ES.8 10 100 II

ES.9 10 100 III

Table 6: Algorithm parameters for ES

configuration population WF mutation
size config rate

GA.1 50 I 5%

GA.2 50 I 10%

GA.3 50 I 20%

GA.4 50 I 50%

GA.5 50 II 5%

GA.6 50 II 10%

GA.7 50 II 20%

GA.8 50 II 50%

GA.9 50 III 5%

GA.10 50 III 10%

GA.11 50 III 20%

GA.12 50 III 50%

GA.13 200 I 5%

GA.14 200 I 10%

GA.15 200 I 20%

GA.16 200 I 50%

GA.17 200 II 5%

GA.18 200 II 10%

GA.19 200 II 20%

GA.20 200 II 50%

GA.21 200 III 5%

GA.22 200 III 10%

GA.23 200 III 20%

GA.24 200 III 50%

Table 7: Algorithm parameters for GA

configuration population mutation
size rate

NSGA.1 10 10%

NSGA.2 10 20%

NSGA.3 10 50%

NSGA.4 10 100%

NSGA.5 100 10%

NSGA.6 100 20%

NSGA.7 100 50%

NSGA.8 100 100%

Table 8: Algorithm parameters for NSGA-II

configuration ES GA OSGA OSGA NSGA-II

100 1000

1 00:28:31 65:26:30 00:38:00 01:05:10 07:42:57

2 00:17:05 63:48:37 00:33:26 00:48:50 14:24:17

3 00:15:41 70:24:20 00:39:02 00:51:10 08:00:49

4 00:07:23 74:40:22 00:39:18 01:01:11 06:00:28

5 00:10:06 00:30:11 00:00:59 00:08:46 138:16:52

6 00:09:12 00:39:08 00:01:06 00:05:16 94:49:59

7 00:08:30 00:41:30 00:01:21 00:06:16 46:06:23

8 00:05:37 00:51:54 00:01:19 00:10:20 38:51:16

9 00:05:34 00:17:45 00:00:50 00:07:30

10 00:19:14 00:00:58 00:05:11

11 00:20:32 00:01:03 00:05:11

12 00:23:24 00:01:00 00:08:06

13 156:25:20 05:52:13 05:46:29

14 156:59:21 05:35:26 06:05:20

15 159:20:25 05:31:01 06:27:06

16 145:22:08 05:47:29 06:32:47

17 04:43:34 00:10:26 00:10:43

18 04:37:09 00:10:58 00:12:57

19 03:56:54 00:09:56 00:13:50

20 04:40:14 00:11:32 00:12:37

21 02:19:58 00:07:09 00:08:17

22 02:27:15 00:07:15 00:13:04

23 02:00:52 00:07:04 00:14:43

24 02:28:35 00:07:46 00:06:28

Table 14: Average execution times
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configuration fitness A B C D E G (1 − B)2 + (1 − C)2 + (1 − D)2

(weighting factors) μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

ES.1 (I) 4.3570 -0.6783 0.9535 0.1388 0.8795 -161.8243 0.9997 0.7585
± 0.0062 ± 0.0291 ± 0.0016 ± 0.0004 ± 0.0078 ± 4.3035 ± 0.0001 ± 0.0018

ES.2 (II) 5.9781 0.3052 0.8084 0.1307 0.9482 -140.7128 0.9998 0.7951
± 0.0201 ± 0.0175 ± 0.0041 ± 0.0005 ± 0.0052 ± 12.7537 ± 0.0001 ± 0.0008

ES.3 (III) 7.5644 0.3938 0.7899 0.1244 0.9616 -150.4708 0.9996 0.8123
± 0.0240 ± 0.0087 ± 0.0037 ± 0.0015 ± 0.0045 ± 13.9084 ± 0.0003 ± 0.0036

ES.4 (I) 4.1904 -1.1596 0.9677 0.1335 0.7764 -211.6199 0.9746 0.8020
± 0.0066 ± 0.0353 ± 0.0016 ± 0.0010 ± 0.0084 ± 5.8625 ± 0.0029 ± 0.0043

ES.5 (II) 5.7025 0.2546 0.8113 0.1296 0.8981 -179.2861 0.9186 0.8038
± 0.0150 ± 0.0202 ± 0.0086 ± 0.0014 ± 0.0122 ± 15.2293 ± 0.0048 ± 0.0039

ES.6 (III) 7.2651 0.3779 0.7834 0.1266 0.9216 -187.2385 0.9063 0.8160
± 0.0259 ± 0.0148 ± 0.0086 ± 0.0010 ± 0.0075 ± 12.1825 ± 0.0054 ± 0.0054

ES.7 (I) 2.3796 -0.6813 0.9224 0.1317 0.3020 -367.8852 0.2426 1.2483
± 0.0162 ± 0.0769 ± 0.0054 ± 0.0014 ± 0.0319 ± 38.0888 ± 0.0102 ± 0.0472

ES.8 (II) 3.8672 0.2165 0.7824 0.1408 0.5155 -388.2234 0.2243 1.0209
± 0.0427 ± 0.0310 ± 0.0128 ± 0.0022 ± 0.0203 ± 11.6880 ± 0.0053 ± 0.0201

ES.9 (III) 5.2800 0.3384 0.7528 0.1347 0.5174 -395.2126 0.2186 1.0430
± 0.0373 ± 0.0154 ± 0.0076 ± 0.0016 ± 0.0123 ± 33.0168 ± 0.0041 ± 0.0123

Table 9: Results for ES

configuration fitness A B C D E G (1 − B)2 + (1 − C)2 + (1 − D)2

(weighting factors) μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

OSGA.1 (I) 2.9746 -7.4695 0.8772 0.1297 0.2657 -334.2880 0.9163 1.3118
± 0.1219 ± 1.2465 ± 0.0101 ± 0.0016 ± 0.0015 ± 23.9643 ± 0.0426 ± 0.0029

OSGA.2 (I) 2.9246 -7.7324 0.8599 0.1289 0.2691 -332.5402 0.9216 1.3128
± 0.0274 ± 0.2614 ± 0.0075 ± 0.0022 ± 0.0071 ± 15.6849 ± 0.0151 ± 0.0110

OSGA.3 (I) 2.9378 -7.5260 0.8865 0.1265 0.2666 -342.4165 0.9002 1.3138
± 0.1253 ± 0.4706 ± 0.0055 ± 0.0005 ± 0.0063 ± 17.4174 ± 0.0457 ± 0.0085

OSGA.4 (I) 2.9761 -7.4787 0.8815 0.1274 0.2740 -340.9637 0.9188 1.3027
± 0.0592 ± 0.2615 ± 0.0082 ± 0.0011 ± 0.0066 ± 17.5956 ± 0.0226 ± 0.0095

OSGA.5 (II) 3.0377 0.0750 0.6990 0.1281 0.2630 -472.1380 0.1548 1.3949
± 0.0412 ± 0.0871 ± 0.0303 ± 0.0010 ± 0.0042 ± 16.0459 ± 0.0096 ± 0.0146

OSGA.6 (II) 3.1214 0.0705 0.7151 0.1269 0.2629 -439.2752 0.1625 1.3903
± 0.0629 ± 0.2048 ± 0.0598 ± 0.0012 ± 0.0045 ± 47.6515 ± 0.0304 ± 0.0380

OSGA.7 (II) 3.1162 0.1437 0.6884 0.1280 0.2627 -432.4444 0.1560 1.4035
± 0.0711 ± 0.1504 ± 0.0501 ± 0.0008 ± 0.0029 ± 66.3843 ± 0.0222 ± 0.0298

OSGA.8 (II) 3.0893 0.1507 0.6908 0.1268 0.2675 -455.2424 0.1501 1.3955
± 0.0400 ± 0.1277 ± 0.0263 ± 0.0016 ± 0.0084 ± 16.6219 ± 0.0228 ± 0.0273

OSGA.9 (III) 4.3353 0.3533 0.6414 0.1266 0.2612 -463.6659 0.1240 1.4376
± 0.0884 ± 0.0775 ± 0.0199 ± 0.0009 ± 0.0025 ± 39.2622 ± 0.0175 ± 0.0177

OSGA.10 (III) 4.3144 0.2751 0.6757 0.1265 0.2606 -504.8659 0.1271 1.4173
± 0.0963 ± 0.1130 ± 0.0489 ± 0.0012 ± 0.0025 ± 83.2736 ± 0.0217 ± 0.0358

OSGA.11 (III) 4.3317 0.3628 0.6387 0.1276 0.2645 -477.4945 0.1237 1.4357
± 0.0433 ± 0.1227 ± 0.0555 ± 0.0008 ± 0.0071 ± 57.6697 ± 0.0098 ± 0.0367

OSGA.12 (III) 4.2912 0.3046 0.6452 0.1266 0.2620 -434.9428 0.1268 1.4363
± 0.0874 ± 0.1240 ± 0.0531 ± 0.0011 ± 0.0052 ± 15.2230 ± 0.0171 ± 0.0458

OSGA.13 (I) 3.1254 -7.0884 0.9630 0.1270 0.2626 -343.0525 0.8958 1.3073
± 0.0376 ± 0.3938 ± 0.0053 ± 0.0009 ± 0.0014 ± 9.1134 ± 0.0296 ± 0.0038

OSGA.14 (I) 3.1019 -7.3593 0.9619 0.1269 0.2618 -347.5358 0.9012 1.3087
± 0.0374 ± 0.4811 ± 0.0033 ± 0.0005 ± 0.0009 ± 12.2619 ± 0.0239 ± 0.0021

OSGA.15 (I) 3.1192 -7.6938 0.9627 0.1271 0.2640 -353.0963 0.9279 1.3050
± 0.0241 ± 0.6074 ± 0.0016 ± 0.0012 ± 0.0014 ± 8.0522 ± 0.0212 ± 0.0024

OSGA.16 (I) 3.0965 -7.0703 0.9634 0.1269 0.2674 -354.9677 0.8854 1.3004
± 0.0195 ± 0.4560 ± 0.0033 ± 0.0005 ± 0.0020 ± 9.1950 ± 0.0241 ± 0.0024

OSGA.17 (II) 3.3620 0.0133 0.7496 0.1297 0.2635 -357.8750 0.2090 1.3636
± 0.0197 ± 0.0897 ± 0.0311 ± 0.0010 ± 0.0022 ± 16.9727 ± 0.0205 ± 0.0144

OSGA.18 (II) 3.5753 0.2280 0.5992 0.1827 0.4109 -273.0839 0.1691 1.3638
± 0.3439 ± 0.3971 ± 0.3004 ± 0.1056 ± 0.2946 ± 138.3514 ± 0.0855 ± 0.0080

OSGA.19 (II) 3.3773 0.0599 0.7309 0.1295 0.2648 -331.0050 0.2084 1.3712
± 0.0302 ± 0.0960 ± 0.0221 ± 0.0015 ± 0.0027 ± 19.5051 ± 0.0166 ± 0.0090

OSGA.20 (II) 3.3614 0.0486 0.7379 0.1285 0.2702 -353.3163 0.2091 1.3612
± 0.0297 ± 0.0486 ± 0.0177 ± 0.0017 ± 0.0055 ± 29.3771 ± 0.0152 ± 0.0127

OSGA.21 (III) 4.5768 0.2831 0.7003 0.1274 0.2618 -414.3977 0.1414 1.3966
± 0.0414 ± 0.0691 ± 0.0204 ± 0.0010 ± 0.0036 ± 33.8977 ± 0.0145 ± 0.0149

OSGA.22 (III) 4.5637 0.2857 0.6996 0.1291 0.2625 -454.2134 0.1506 1.3935
± 0.0470 ± 0.0693 ± 0.0281 ± 0.0009 ± 0.0031 ± 25.5217 ± 0.0074 ± 0.0140

OSGA.23 (III) 4.5898 0.2995 0.6909 0.1290 0.2641 -416.9518 0.1526 1.3968
± 0.0361 ± 0.0923 ± 0.0324 ± 0.0021 ± 0.0041 ± 15.4548 ± 0.0148 ± 0.0185

OSGA.24 (III) 4.5388 0.2674 0.6989 0.1273 0.2677 -436.2067 0.1512 1.3893
± 0.0326 ± 0.0825 ± 0.0280 ± 0.0009 ± 0.0052 ± 33.4633 ± 0.0110 ± 0.0188

Table 10: Results for OSGA with a maximum selection pressure of 100
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configuration fitness A B C D E G (1 − B)2 + (1 − C)2 + (1 − D)2

(weighting factors) μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

OSGA.1 (I) 3.0390 -7.4840 0.8688 0.1281 0.2693 -320.3625 0.9526 1.3116
± 0.1263 ± 0.7301 ± 0.0139 ± 0.0019 ± 0.0045 ± 10.6459 ± 0.0110 ± 0.0108

OSGA.2 (I) 2.9569 -7.5020 0.8593 0.1264 0.2635 -327.8744 0.9290 1.3255
± 0.1069 ± 0.2541 ± 0.0096 ± 0.0018 ± 0.0032 ± 18.5919 ± 0.0227 ± 0.0091

OSGA.3 (I) 3.0663 -7.0850 0.8627 0.1294 0.2681 -309.6847 0.9453 1.3128
± 0.0373 ± 0.6012 ± 0.0114 ± 0.0021 ± 0.0062 ± 12.6427 ± 0.0194 ± 0.0109

OSGA.4 (I) 2.9861 -7.7227 0.8826 0.1277 0.2708 -332.0081 0.9304 1.3068
± 0.0688 ± 0.5555 ± 0.0178 ± 0.0013 ± 0.0097 ± 10.9920 ± 0.0249 ± 0.0123

OSGA.5 (II) 3.1272 0.1872 0.6721 0.1274 0.2621 -412.0663 0.1566 1.4152
± 0.0298 ± 0.1665 ± 0.0412 ± 0.0021 ± 0.0016 ± 48.7797 ± 0.0310 ± 0.0207

OSGA.6 (II) 3.1260 0.2059 0.6664 0.1294 0.2611 -407.7279 0.1462 1.4164
± 0.0646 ± 0.1190 ± 0.0341 ± 0.0027 ± 0.0037 ± 55.5925 ± 0.0252 ± 0.0176

OSGA.7 (II) 3.1430 0.1283 0.6858 0.1284 0.2639 -392.3991 0.1596 1.4004
± 0.0613 ± 0.0510 ± 0.0063 ± 0.0015 ± 0.0067 ± 53.5551 ± 0.0181 ± 0.0093

OSGA.8 (II) 3.2258 0.3209 0.5613 0.1559 0.4219 -343.1475 0.1310 1.4052
± 0.1015 ± 0.3471 ± 0.2817 ± 0.0554 ± 0.2892 ± 174.3164 ± 0.0668 ± 0.0703

OSGA.9 (III) 4.4018 0.4193 0.6292 0.1282 0.2654 -457.6038 0.1148 1.4374
± 0.0655 ± 0.0391 ± 0.0136 ± 0.0013 ± 0.0019 ± 37.6468 ± 0.0024 ± 0.0083

OSGA.10 (III) 4.4057 0.3408 0.6590 0.1283 0.2648 -455.6775 0.1194 1.4173
± 0.0502 ± 0.0591 ± 0.0248 ± 0.0019 ± 0.0083 ± 33.7490 ± 0.0130 ± 0.0210

OSGA.11 (III) 4.4198 0.3619 0.6475 0.1280 0.2628 -432.8915 0.1241 1.4285
± 0.0344 ± 0.0512 ± 0.0169 ± 0.0014 ± 0.0045 ± 31.1507 ± 0.0088 ± 0.0190

OSGA.12 (III) 4.4324 0.2555 0.6870 0.1285 0.2639 -434.6844 0.1375 1.4002
± 0.0440 ± 0.0766 ± 0.0294 ± 0.0022 ± 0.0060 ± 29.1328 ± 0.0110 ± 0.0181

OSGA.13 (I) 3.1194 -7.3911 0.9641 0.1273 0.2617 -354.6142 0.9122 1.3080
± 0.0155 ± 0.5308 ± 0.0071 ± 0.0006 ± 0.0009 ± 6.6739 ± 0.0204 ± 0.0013

OSGA.14 (I) 3.1260 -7.1229 0.9609 0.1278 0.2634 -346.3559 0.9002 1.3049
± 0.0348 ± 0.4378 ± 0.0037 ± 0.0008 ± 0.0023 ± 0.3813 ± 0.0101 ± 0.0044

OSGA.15 (I) 3.1314 -7.0845 0.9631 0.1276 0.2661 -346.0999 0.8985 1.3010
± 0.0236 ± 1.0084 ± 0.0052 ± 0.0012 ± 0.0021 ± 11.9384 ± 0.0490 ± 0.0039

OSGA.16 (I) 3.1338 -7.0331 0.9632 0.1268 0.2671 -343.6581 0.8969 1.3010
± 0.0266 ± 0.3920 ± 0.0040 ± 0.0009 ± 0.0011 ± 18.9551 ± 0.0224 ± 0.0026

OSGA.17 (II) 3.3600 0.0151 0.7412 0.1302 0.2655 -350.8687 0.2141 1.3637
± 0.0263 ± 0.1024 ± 0.0250 ± 0.0010 ± 0.0030 ± 17.8131 ± 0.0158 ± 0.0105

OSGA.18 (II) 3.3298 0.1501 0.7221 0.1284 0.2640 -365.6197 0.1742 1.3790
± 0.0234 ± 0.0797 ± 0.0166 ± 0.0019 ± 0.0037 ± 16.7608 ± 0.0143 ± 0.0080

OSGA.19 (II) 3.3567 0.0943 0.7367 0.1288 0.2627 -349.0628 0.1842 1.3729
± 0.0366 ± 0.0829 ± 0.0309 ± 0.0014 ± 0.0034 ± 19.7474 ± 0.0109 ± 0.0176

OSGA.20 (II) 3.3795 0.0168 0.7474 0.1286 0.2689 -348.0070 0.2170 1.3585
± 0.0209 ± 0.1402 ± 0.0275 ± 0.0013 ± 0.0048 ± 22.4220 ± 0.0257 ± 0.0204

OSGA.21 (III) 4.5685 0.3407 0.6662 0.1283 0.2647 -387.5015 0.1491 1.4128
± 0.0345 ± 0.0772 ± 0.0286 ± 0.0012 ± 0.0038 ± 58.6999 ± 0.0154 ± 0.0208

OSGA.22 (III) 4.5663 0.2866 0.6960 0.1283 0.2607 -427.0658 0.1484 1.3993
± 0.0376 ± 0.0482 ± 0.0206 ± 0.0009 ± 0.0022 ± 33.0077 ± 0.0113 ± 0.0157

OSGA.23 (III) 4.6165 0.2651 0.6985 0.1286 0.2685 -383.0627 0.1640 1.3867
± 0.0275 ± 0.1155 ± 0.0369 ± 0.0020 ± 0.0071 ± 42.5452 ± 0.0232 ± 0.0213

OSGA.24 (III) 4.6079 0.2134 0.7224 0.1275 0.2659 -396.3235 0.1614 1.3780
± 0.0353 ± 0.0787 ± 0.0258 ± 0.0006 ± 0.0034 ± 22.0777 ± 0.0093 ± 0.0125

Table 11: Results for OSGA with a maximum selection pressure of 1000
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configuration fitness A B C D E G (1 − B)2 + (1 − C)2 + (1 − D)2

(weighting factors) μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

GA.1 (I) 2.8447 -8.6780 0.8848 0.1278 0.2662 -347.9151 0.9138 1.3129
± 0.0300 ± 0.5577 ± 0.0189 ± 0.0008 ± 0.0069 ± 13.4363 ± 0.0180 ± 0.0055

GA.2 (I) 2.8551 -7.7880 0.8895 0.1268 0.2666 -364.3555 0.8794 1.3127
± 0.0411 ± 0.7012 ± 0.0117 ± 0.0011 ± 0.0038 -± 17.9481 ± 0.0404 ± 0.0070

GA.3 (I) 2.8895 -7.7873 0.8815 0.1276 0.2690 -361.2115 0.9015 1.3096
± 0.0710 ± 0.3333 ± 0.0094 ± 0.0016 ± 0.0071 ± 24.5732 ± 0.0353 ± 0.0121

GA.4 (I) 2.8930 -8.1451 0.9046 0.1264 0.2829 -371.0544 0.9026 1.2866
± 0.0971 ± 0.6438 ± 0.0089 ± 0.0005 ± 0.0064 ± 15.9012 ± 0.0092 ± 0.0105

GA.5 (II) 3.1644 0.3813 0.5418 0.1593 0.4084 -367.6429 0.1030 1.4318
± 0.1906 ± 0.3131 ± 0.2710 ± 0.0648 ± 0.2958 ± 187.5801 ± 0.0516 ± 0.0380

GA.6 (II) 3.0715 0.3100 0.6375 0.1283 0.2625 -439.7807 0.1297 1.4387
± 0.0711 ± 0.1308 ± 0.0589 ± 0.0025 ± 0.0050 ± 33.3116 ± 0.0108 ± 0.0446

GA.7 (II) 3.0603 0.2314 0.6430 0.1266 0.2694 -406.7175 0.1429 1.4260
± 0.0654 ± 0.1459 ± 0.0435 ± 0.0004 ± 0.0084 ± 16.4806 ± 0.0309 ± 0.0382

GA.8 (II) 3.1168 0.2024 0.6717 0.1263 0.2720 -421.8528 0.1504 1.4019
± 0.0539 ± 0.1280 ± 0.0272 ± 0.0018 ± 0.0084 ± 57.4359 ± 0.0215 ± 0.0281

GA.9 (III) 4.2663 0.4406 0.6101 0.1287 0.2608 -516.0732 0.1029 1.4587
± 0.0588 ± 0.0906 ± 0.0302 ± 0.0011 ± 0.0028 ± 75.3598 ± 0.0146 ± 0.0215

GA.10 (III) 4.3189 0.4366 0.6127 0.1268 0.2673 -475.9109 0.1086 1.4498
± 0.1411 ± 0.0459 ± 0.0206 ± 0.0011 ± 0.0046 ± 69.0845 ± 0.0182 ± 0.0131

GA.11 (III) 4.2513 0.3782 0.6230 0.1273 0.2652 -483.3367 0.1107 1.4457
± 0.0360 ± 0.0968 ± 0.0442 ± 0.0010 ± 0.0092 ± 49.8040 ± 0.0213 ± 0.0283

GA.12 (III) 4.3498 0.4582 0.6068 0.1256 0.2785 -461.8841 0.1097 1.4409
± 0.1001 ± 0.0597 ± 0.0313 ± 0.0013 ± 0.0145 ± 65.3825 ± 0.0125 ± 0.0252

GA.13 (I) 2.7326 -8.9548 0.9737 0.1269 0.2623 -493.0023 0.8571 1.3072
± 0.0362 ± 0.2734 ± 0.0015 ± 0.0005 ± 0.0012 ± 28.3782 ± 0.0143 ± 0.0016

GA.14 (I) 2.7119 -8.2744 0.9720 0.1266 0.2620 -488.1769 0.8126 1.3083
± 0.0292 ± 0.6513 ± 0.0033 ± 0.0008 ± 0.0014 ± 17.3524 ± 0.0429 ± 0.0034

GA.15 (I) 2.6555 -7.7567 0.9695 0.1263 0.2643 -529.2015 0.7817 1.3056
± 0.0583 ± 1.1280 ± 0.0043 ± 0.0004 ± 0.0014 ± 14.1687 ± 0.0746 ± 0.0015

GA.16 (I) 2.6749 -7.8767 0.9710 0.1265 0.2686 -508.0574 0.7843 1.2988
± 0.0566 ± 1.2966 ± 0.0043 ± 0.0007 ± 0.0054 ± 36.2673 ± 0.0620 ± 0.0080

GA.17 (II) 3.1999 0.0428 0.7267 0.1292 0.2659 -425.9723 0.1828 1.3729
± 0.0684 ± 0.1504 ± 0.0321 ± 0.0015 ± 0.0042 ± 39.5065 ± 0.0147 ± 0.0240

GA.18 (II) 3.1968 0.1088 0.7054 0.1300 0.2686 -404.2369 0.1661 1.3799
± 0.0299 ± 0.1395 ± 0.0328 ± 0.0041 ± 0.0089 ± 10.5182 ± 0.0273 ± 0.0254

GA.19 (II) 3.2193 0.1176 0.7055 0.1278 0.2772 -397.3209 0.1748 1.3723
± 0.0545 ± 0.1764 ± 0.0460 ± 0.0011 ± 0.0149 ± 30.8640 ± 0.0241 ± 0.0227

GA.20 (II) 3.3198 0.3217 0.5612 0.1671 0.4225 -335.7993 0.1348 1.3885
± 0.2279 ± 0.3478 ± 0.2810 ± 0.0784 ± 0.2890 ± 171.9184 ± 0.0689 ± 0.0397

GA.21 (III) 4.3541 0.3185 0.6471 0.1265 0.2632 -415.1718 0.1296 1.4331
± 0.0342 ± 0.1437 ± 0.0512 ± 0.0019 ± 0.0046 ± 25.8177 ± 0.0226 ± 0.0399

GA.22 (III) 4.3899 0.3081 0.6684 0.1276 0.2629 -466.7078 0.1283 1.4158
± 0.0227 ± 0.0821 ± 0.0376 ± 0.0008 ± 0.0035 ± 48.0598 ± 0.0085 ± 0.0273

GA.23 (III) 4.3889 0.3442 0.6451 0.1285 0.2664 -431.7201 0.1297 1.4258
± 0.0350 ± 0.1139 ± 0.0471 ± 0.0013 ± 0.0065 ± 40.1796 ± 0.0186 ± 0.0396

GA.24 (III) 4.4178 0.2456 0.6887 0.1272 0.2749 -446.6220 0.1417 1.3862
± 0.0242 ± 0.1157 ± 0.0391 ± 0.0010 ± 0.0146 ± 35.6724 ± 0.0192 ± 0.0441

Table 12: Results for GA

configuration MAX(B) MAX(C) MAX(D) MIN((1 − B)2 + (1 − C)2 + (1 − D)2)

(μ ± σ) (μ ± σ) (μ ± σ) B (μ ± σ) C (μ ± σ) D (μ ± σ) (1 − B)2 + (1 − C)2 + (1 − D)2 (μ ± σ)

NSGA.1 0.8582 0.2345 1.0000 0.7395 0.1676 0.5795 0.9797
± 0.0269 ± 0.0472 ± 0.0000 ± 0.1800 ± 0.0327 ± 0.1387 ± 0.1376

NSGA.2 0.9157 0.3371 1.0000 0.8895 0.2215 0.6907 0.7221
± 0.0250 ± 0.1075 ± 0.0000 ± 0.0374 ± 0.0543 ± 0.0762 ± 0.0957

NSGA.3 0.9340 0.3071 1.0000 0.8642 0.1835 0.5839 0.8931
± 0.0103 ± 0.0558 ± 0.0000 ± 0.0939 ± 0.0433 ± 0.1811 ± 0.1860

NSGA.4 0.9598 0.3385 1.0000 0.7715 0.1766 0.5018 1.0628
± 0.0082 ± 0.0444 ± 0.0000 ± 0.2479 ± 0.0516 ± 0.2037 ± 0.1188

NSGA.5 0.9755 0.3970 1.0000 0.8496 0.4025 0.6723 0.6466
± 0.0045 ± 0.0552 ± 0.0000 ± 0.0503 ± 0.0695 ± 0.0681 ± 0.1174

NSGA.6 0.9727 0.3935 1.0000 0.8293 0.2415 0.7033 0.6992
± 0.0074 ± 0.0436 ± 0.0000 ± 0.0804 ± 0.0277 ± 0.0334 ± 0.0412

NSGA.7 0.9716 0.3354 1.0000 0.8196 0.2267 0.8223 0.6709
± 0.0037 ± 0.0714 ± 0.0000 ± 0.0644 ± 0.0543 ± 0.0624 ± 0.0983

NSGA.8 0.9768 0.3787 1.0000 0.8080 0.2538 0.8241 0.6334
± 0.0042 ± 0.0974 ± 0.0000 ± 0.0407 ± 0.0860 ± 0.0431 ± 0.1266

Table 13: Results for NSGA-II
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runs for each test setup. In Table 13 we present maximum
values achieved for B, C, and D found in solutions present
in the Pareto front; furthermore we also report on the best
solutions that are optimal (minimal) with respect to the fit-
ness function (1 − B)2 + (1 − C)2 + (1 − D)2, which was
not used by the algorithms. This value is also given for all
results produced by the other tested algorithms.

As we can see in Table 14, runs using the weighting factor
configuration I are much more time expensive than those
using configurations II and III. The reason for this is the
number of documents clustered: All test runs performed
with configuration I yield a much higher average value for
parameter B, which measures the number of documents in-
corporated in the clusters. In fact this is a bit surprising as
this configuration has the lowest weighting factor value for
β (see Table 4), which defines the weighting of parameter B.
This indicates that not the weighting factors on their own
but rather their combination lead to the results we see here;
weighting factor tuning is in this context a challenging task
on its own.

Furthermore, we can also retain that evolution strategy
performs best of all single-objective algorithms tested here.
Not only the average execution times justify this statement
(Table 14) but also the comparison of the parameter values
measured: Comparing the last columns of the results shown
in Tables 9 - 12, which outline the combination of the most
interesting parameters (B, C, and D), we can see that al-
ready the worst result of ES (1.2483) outperforms all test
results achieved using GAs and OSGAs. Concerning algo-
rithm parameters of ES, the 1+1 strategy generates the best
solutions. Considering GA and OSGA, there is no obvious
preference for either algorithm for this application scenario;
regarding offspring selection settings we see that increasing
the maximum selection pressure to values higher than 100
does not seem to have a significant positive effect. When
comparing ES to the multi-objective approach, we can see
that the NSGA-II produces results with qualities similar to
evolution strategy results; still we have to admit that the ex-
ecution times for the NSGA-II runs are significantly higher
(Table 14). As we see in Table 13, the best results obtained
are produced by the NSGA-II with population size 100 and
10% or 100% mutation rate; these results outperform all
results achieved with ES.

4. CONCLUSION AND OUTLOOK
In this paper we have presented an analysis on keyword

cluster optimization using evolutionary algorithms; both
single-objective and multi-objective approaches were tested
with several configurations. We see that evolution strategy
performs best of all single-objective methods as it creates
best solutions in rather short time. The NSGA-II provides
results with comparable quality; however, the average exe-
cution times exceed the runtime of ES.

When it comes to using this approach in query extension
we suggest using the NSGA-II as it covers various parts of
the solution space and thus generates solutions appropriate
for different user requirements: Users who want to choose
only the most significant words for query extension would
use a solution with a high C and D value, whereas users
desiring a more broaden search would need a solution with
a high B value. To achieve the same possibilities with ES it
would be necessary to generate one solution per user require-
ment (manifesting in different weighting factor settings) and

spend a lot more time on weighting factor tuning. As shown
in Section 3.3, this kind of optimization is a challenging task
and is not necessary when using the NSGA-II.

To use the generated keyword clusters in practice we are
currently working on a new search for PubMed data using
query extension to find more significant results. For the
application of the here discussed biomedical information re-
trieval approach we will invest even more effort in the iden-
tification of optimal clusters using bigger population sizes
and higher limits for the number of evaluated solutions (even
though this will require more runtime).
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